我想使用monte-carlo集成方法,下面是我的代码。如您所见,我确定了间隔积分,但是结果是错误的!此代码有什么问题?
任何帮助将不胜感激。
#include <iostream>
#include <math.h>
#include <stdlib.h>
#define N 500
using namespace std;
double Func(double x) { return pow(x, 2) + 1; }
double Monte_Carlo(double Func(double), double xmin, double xmax, double ymin,
double ymax)
{
int acc = 0;
int tot = 0;
for (int count = 0; count < N; count++)
{
double x0 = (double)rand() / 4 + (-2);
double y0 = (double)rand() / 4 + 0;
float x = x0 / (float)RAND_MAX;
float y = y0 / (float)RAND_MAX;
cout << x << endl;
if (y <= Func(x))
acc++;
tot++;
// cout << "Dgage" << tot << '\t' << acc << endl;
}
double Coeff = acc / N;
return (xmax - xmin) * (1.2 * Func(xmax)) * Coeff;
}
int main()
{
cout << "Integral value is: " << Monte_Carlo(Func, -2, 2, 0, 4) << endl;
system("pause");
return 0;
}
答案 0 :(得分:0)
Monte_Carlo函数使事情变得比他们需要的复杂。对于集成一维函数,我们要做的就是在要积分的区域内多次采样函数的值:
#include <random>
double Monte_Carlo(double Func(double), double xmin, double xmax, int N)
{
// This is the distribution we're using to generate inputs
auto x_dist = std::uniform_real_distribution<>(xmin, xmax);
// This is the random number generator itself
auto rng = std::default_random_engine();
// Calculate the total of N random samples
double total = 0.0;
for(int i = 0; i < N; i++) {
double x = x_dist(rng); // Generate a value
total += Func(x);
}
// Return the size of the interval times the total,
// divided by the number of samples
return (xmax - xmin) * total / N;
}
如果我们使用N = 1000
运行此代码,我们将得到一个整数值9.20569
,非常接近确切的答案(9.33333...
)。
// It's much more efficent to use x*x instead of pow
double func(double x) { return x * x + 1; }
int main()
{
cout << "Integral value is: " << Monte_Carlo(func, -2, 2, 1000) << endl;
getchar(); // Pause until the user presses enter
return 0;
}
我们还可以尝试N
的多个值,以使程序显示其收敛方式。以下程序计算从2
到0
的{{1}}的幂为N的积分
30
输出显示monte carlo方法确实收敛:
#include <iostream>
#include <cmath>
#include <random>
using namespace std;
double func(double x) { return x*x + 1; }
double Monte_Carlo(double Func(double), double xmin, double xmax, int N) {
auto x_dist = std::uniform_real_distribution<>(xmin, xmax);
auto rng = std::default_random_engine();
double total = 0.0;
for(int i = 0; i < N; i++) {
double x = x_dist(rng); // Generate a value
total += Func(x);
}
return (xmax - xmin) * total / N;
}
int main() {
int N = 1;
for(int i = 0; i < 31; i++) {
std::cout << "N = " << N << "\t\tintegral = " << Monte_Carlo(func, -2, 2, N) << endl;
N *= 2; // Double N
}
}