2人游戏从给定数字中减去完美平方的算法

时间:2019-06-19 00:11:27

标签: java sequence dynamic-programming greedy

我需要一些问题的帮助。我最近在一次采访中得到了这个,我试图解决它,但是没有运气。这是问题:

编写一个由两个玩家组成的游戏的算法。输入是一个正整数x。每一轮,玩家从数字中扣除一个完美的平方。玩家可以选择任何理想的正方形,只要该正方形小于或等于当前数字且大于0。如果扣除后数字变为0,则当前玩家获胜。

我认为这应该使用动态编程/贪婪方法来完成,我不太熟悉。否则我们可能需要得出一系列获胜/失败数字,如果玩家最终以获胜序列结束,无论如何他都会获胜。但是我们如何提出这样的顺序?

有人可以用Java解决这个问题吗?

更新:

DAle建议的解决方案1:

public int subtractPerfectSquares(int n)
   {
      if (n <= 0)
         return 1;
      boolean[] isWinningCase = new boolean[n + 1];

      for (int i = 1; i <= n; i++)
      {
         for (int num = 1; num * num <= i; num++)
         {
            if (!isWinningCase[i - (num * num)])
            {
               isWinningCase[i] = true;
               break;
            }
         }
      }

      return isWinningCase[n] ? 1 : 2;
   }

对Solution2进行了修改以便更好地理解:

 public int subtractPerfectSquares2(int n)
   {
      if (n <= 0)
         return 1;
      boolean[] isWinningCase = new boolean[n + 1];

      // if we reach 0, we win
      isWinningCase[0] = true;
      // 1 is a win 
      isWinningCase[1] = true;
      // 2 is a losing condition. We must define this as this state dictates losing scenarios for further states
      isWinningCase[2] = false;

      // we start from 3
      for (int i = 3; i <= n; i++)
      {
         for (int num = 1; num * num <= i; num++)
         {
            int prefectSquare = num * num;
            // if we get to 0 from current number or if we get to a losing scenario (to be faced by next player) from current number, then the current state is a winning position
            if (i - prefectSquare == 0 || !isWinningCase[i - prefectSquare])
            {
               isWinningCase[i] = true;
               break;
            }
         }
      }

      // return player 1 if given number is a winning state else player 2 wins
      return isWinningCase[n] ? 1 : 2;
   }

2 个答案:

答案 0 :(得分:1)

此游戏中玩家之间的唯一区别是玩家1排名第一。这类游戏称为impartial game,两个玩家的完美策略都相同。此外,我们可以使用以下规则将游戏的所有状态(整数x)分为两种类型:获胜位置或失落位置:

  1. x=0是亏损职位
  2. 如果至少有一种可能导致失败的位置的动作,则
  3. 位置x是获胜位置。
  4. 如果所有可能的举动都导致获胜位置,则
  5. 位置x是亏损位置。

然后,我们需要确定从1x的所有职位的类型。可能的实现:

boolean[] isWinning = new boolean[x+1];
for (int state = 0; state <= x; ++state) {
    isWinning[state] = false;
    for (int i = 1; i*i <= state; ++i) {
        int perfectSquare = i*i;
        if (!isWinning[state - perfectSquare]) {
            isWinning[state] = true;
            break;
        }
    }
}

如果当前玩家处于获胜位置(isWinning[x] == true),则应该选择isWinning[x - perfectSquare] == false这样的完美正方形。这将使游戏(和另一个玩家)处于失败位置。如果玩家处于失败位置,那么什么也救不了他,每个可能的完美平方都同样糟糕。

答案 1 :(得分:1)

下面的程序将帮助您实现逻辑。我已尝试根据您的要求实施代码。请确保在需要改进时发表评论,或者澄清对逻辑的误解。

public class Game {

public static void main(String[] args) {
    int number = 0;
    int count = 1;
    int player = 1;
    System.out.println("Please Enter a positive integer");
    try (Scanner sc = new Scanner(System.in);) {
        number = sc.nextInt();
        while (number > 0) {
            int numberArray[] = generatePerfectSquare(1, number);
            System.out.println("===================");
            System.out.println("perfect square numbers");
            for (int i : numberArray) {
                System.out.print(i);
                System.out.print("   ");
            }
            System.out.println("");
            System.out.println("===================");

            player = ((count % 2 == 0) ? 2 : 1);
            System.out.println("Round : " + count + "   Player : " + player);
            System.out.println("Please Enter your prefered perfect square number");

            number = number - sc.nextInt();
            if (number <= 0) {
                System.out.println("****************");
                System.out.println("You won the game");
                System.out.println("===================");
            } else {
                System.out.println("===================");
                System.out.println("You should try more");
                System.out.println("===================");
            }
            count++;
        }
    } catch (Exception e) {
        System.out.println(e);
    }

}

private static int[] generatePerfectSquare(int start, int end) {

    if (start > end || start < 0) {
        throw new IllegalArgumentException();
    }
    int[] perfectSquares = new int[end - start];
    int n = 0;
    int candidate = (int) Math.ceil(Math.sqrt(start));
    int square;
    while ((square = candidate * candidate) < end) {
        perfectSquares[n++] = square;
        candidate++;
    }
    return Arrays.copyOf(perfectSquares, n);
}

测试结果

enter image description here