为什么在OpenCV中,三角剖分的点不会投影回相同的图像点?

时间:2019-06-07 20:32:16

标签: python opencv computer-vision structure-from-motion reprojection-error

我有两个对应的图像点(2D),它们由具有内在矩阵K的同一台摄像机可视化,每一个均来自不同的摄像机姿态(R1,t1,R2,t2)。如果我将对应的图像点三角剖分到3D点,然后将其重新投影回原始相机,则它仅与第一台相机中的原始图像点紧密匹配。有人可以帮我理解为什么吗?这是显示问题的最小示例:

import cv2
import numpy as np

# Set up two cameras near each other

K = np.array([
    [718.856 ,   0.  ,   607.1928],
    [  0.  ,   718.856 , 185.2157],
    [  0.  ,     0.   ,    1.    ],
])

R1 = np.array([
    [1., 0., 0.],
    [0., 1., 0.],
    [0., 0., 1.]
])

R2 = np.array([
    [ 0.99999183 ,-0.00280829 ,-0.00290702],
    [ 0.0028008  , 0.99999276, -0.00257697],
    [ 0.00291424 , 0.00256881 , 0.99999245]
])

t1 = np.array([[0.], [0.], [0.]])

t2 = np.array([[-0.02182627], [ 0.00733316], [ 0.99973488]])

P1 = np.hstack([R1.T, -R1.T.dot(t1)])
P2 = np.hstack([R2.T, -R2.T.dot(t2)])

P1 = K.dot(P1)
P2 = K.dot(P2)

# Corresponding image points
imagePoint1 = np.array([371.91915894, 221.53485107])
imagePoint2 = np.array([368.26071167, 224.86262512])

# Triangulate
point3D = cv2.triangulatePoints(P1, P2, imagePoint1, imagePoint2).T
point3D = point3D[:, :3] / point3D[:, 3:4]
print(point3D)

# Reproject back into the two cameras
rvec1, _ = cv2.Rodrigues(R1)
rvec2, _ = cv2.Rodrigues(R2)

p1, _ = cv2.projectPoints(point3D, rvec1, t1, K, distCoeffs=None)
p2, _ = cv2.projectPoints(point3D, rvec2, t2, K, distCoeffs=None)

# measure difference between original image point and reporjected image point 

reprojection_error1 = np.linalg.norm(imagePoint1 - p1[0, :])
reprojection_error2 = np.linalg.norm(imagePoint2 - p2[0, :])

print(reprojection_error1, reprojection_error2)

第一个相机的重投影误差始终很好(<1px),但是第二个相机的投影误差总是很大。

1 个答案:

答案 0 :(得分:2)

请记住如何通过旋转矩阵的转置结合平移矢量的负值来构造投影矩阵。将其放入cv2.projectPoints时必须做同样的事情。

因此,对旋转矩阵进行转置并将其放入cv2.Rodrigues中。最后,将翻译向量的负数提供给cv2.projectPoints

# Reproject back into the two cameras
rvec1, _ = cv2.Rodrigues(R1.T) # Change
rvec2, _ = cv2.Rodrigues(R2.T) # Change

p1, _ = cv2.projectPoints(point3D, rvec1, -t1, K, distCoeffs=None) # Change
p2, _ = cv2.projectPoints(point3D, rvec2, -t2, K, distCoeffs=None) # Change

这样做,我们现在得到:

[[-12.19064      1.8813655   37.24711708]]
0.009565768222768252 0.08597237597736622

绝对可以确定,以下是相关变量:

In [32]: p1
Out[32]: array([[[371.91782052, 221.5253794 ]]])

In [33]: p2
Out[33]: array([[[368.3204979 , 224.92440583]]])

In [34]: imagePoint1
Out[34]: array([371.91915894, 221.53485107])

In [35]: imagePoint2
Out[35]: array([368.26071167, 224.86262512])

我们可以看到前几位有效数字匹配,并且由于这是对点进行三角剖分的最小二乘法,因此我们希望精度会有所下降。