我想为R中的数据点添加“角度臂”。
关于数据的主要假设是y值在开始时就显着增加,而在一段时间后,则显着增加(类似于偏差的平稳状态)。
是否可以在没有特定假设的情况下确定该点(角顶点)的x坐标? 我的想法是将x范围划分为两个部分,并进行线性回归以适应角度臂。
图片显示了两个可能的角度顶点(黄色/红色),对我来说看起来很不错(直线/空圆是所有数据的线性回归拟合)。 蓝色实心圆点表示输入数据。绿色粗线是我的主观角度适合数据。
答案 0 :(得分:0)
根据注释,这是一个图形化的Python示例,该示例将两条直线拟合到数据,并将它们之间的断点自动选择为拟合参数。本示例使用标准的scipydifferential_evolution遗传算法模块来确定两条直线和断点的初始参数估计。该scipy模块使用Latin Hypercube算法来确保对参数空间进行彻底搜索,要求搜索范围有限。在此示例中,这些界限是从输入数据得出的。
import numpy, scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy.optimize import differential_evolution
import warnings
xData = numpy.array([19.1647, 18.0189, 16.9550, 15.7683, 14.7044, 13.6269, 12.6040, 11.4309, 10.2987, 9.23465, 8.18440, 7.89789, 7.62498, 7.36571, 7.01106, 6.71094, 6.46548, 6.27436, 6.16543, 6.05569, 5.91904, 5.78247, 5.53661, 4.85425, 4.29468, 3.74888, 3.16206, 2.58882, 1.93371, 1.52426, 1.14211, 0.719035, 0.377708, 0.0226971, -0.223181, -0.537231, -0.878491, -1.27484, -1.45266, -1.57583, -1.61717])
yData = numpy.array([0.644557, 0.641059, 0.637555, 0.634059, 0.634135, 0.631825, 0.631899, 0.627209, 0.622516, 0.617818, 0.616103, 0.613736, 0.610175, 0.606613, 0.605445, 0.603676, 0.604887, 0.600127, 0.604909, 0.588207, 0.581056, 0.576292, 0.566761, 0.555472, 0.545367, 0.538842, 0.529336, 0.518635, 0.506747, 0.499018, 0.491885, 0.484754, 0.475230, 0.464514, 0.454387, 0.444861, 0.437128, 0.415076, 0.401363, 0.390034, 0.378698])
def func(xArray, breakpoint, slopeA, offsetA, slopeB, offsetB):
returnArray = []
for x in xArray:
if x < breakpoint:
returnArray.append(slopeA * x + offsetA)
else:
returnArray.append(slopeB * x + offsetB)
return returnArray
# function for genetic algorithm to minimize (sum of squared error)
def sumOfSquaredError(parameterTuple):
warnings.filterwarnings("ignore") # do not print warnings by genetic algorithm
val = func(xData, *parameterTuple)
return numpy.sum((yData - val) ** 2.0)
def generate_Initial_Parameters():
# min and max used for bounds
maxX = max(xData)
minX = min(xData)
maxY = max(yData)
minY = min(yData)
slope = 10.0 * (maxY - minY) / (maxX - minX) # times 10 for safety margin
parameterBounds = []
parameterBounds.append([minX, maxX]) # search bounds for breakpoint
parameterBounds.append([-slope, slope]) # search bounds for slopeA
parameterBounds.append([minY, maxY]) # search bounds for offsetA
parameterBounds.append([-slope, slope]) # search bounds for slopeB
parameterBounds.append([minY, maxY]) # search bounds for offsetB
result = differential_evolution(sumOfSquaredError, parameterBounds, seed=3)
return result.x
# by default, differential_evolution completes by calling curve_fit() using parameter bounds
geneticParameters = generate_Initial_Parameters()
# call curve_fit without passing bounds from genetic algorithm
fittedParameters, pcov = curve_fit(func, xData, yData, geneticParameters)
print('Parameters:', fittedParameters)
print()
modelPredictions = func(xData, *fittedParameters)
absError = modelPredictions - yData
SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))
print()
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
print()
##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
# first the raw data as a scatter plot
axes.plot(xData, yData, 'D')
# create data for the fitted equation plot
xModel = numpy.linspace(min(xData), max(xData))
yModel = func(xModel, *fittedParameters)
# now the model as a line plot
axes.plot(xModel, yModel)
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
plt.show()
plt.close('all') # clean up after using pyplot
graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)