我有一个源自分段平滑曲线的二进制蒙版。每个基础曲线线段都是平滑的,但是线段之间的连接可能是平滑的,也可能不是平滑的。
遮罩很吵,因此它可能在基础曲线周围包含多个像素。下图显示了此类输入的示例:
在没有任何其他先验知识的情况下,鉴于此输入,我想估计与基础曲线的拟合,从而能够提供平滑和非平滑的连接。
我在python中工作,所以我尝试了几种可用的方法,例如numpy的多项式拟合,scipy的样条平滑和pyqt-fit的非参数回归,但无法获得所需的输出。这是一个代码示例:
from imageio import imread
import random
import numpy as np
from scipy.interpolate import UnivariateSpline
import pyqt_fit.nonparam_regression as smooth
from pyqt_fit import npr_methods
from matplotlib import pyplot as plt
mask = imread(r'C:\mask.bmp')
ys, xs = np.where(mask)
# add tiny noise and sort - silly way to comply to UnivariateSpline's requirement of "x must be strictly increasing"
xs = np.array([x + random.random() * 1e-4 for x in xs])
sorter = np.argsort(xs)
xs = xs[sorter]
ys = ys[sorter]
# polynomial fit
p = np.poly1d(np.polyfit(xs, ys, 5))
# spline smoothing
spl = UnivariateSpline(xs, ys, k=3, s=1e9)
# non-parameteric regression
k = smooth.NonParamRegression(xs, ys, method=npr_methods.LocalPolynomialKernel(q=3))
k.fit()
plt.figure()
plt.imshow(mask, cmap='gray')
linexs = np.array(range(mask.shape[1]))
plt.plot(linexs, k(linexs), 'y', lw=1)
plt.plot(linexs, spl(linexs), 'g', lw=1)
plt.plot(linexs, p(linexs), 'b', lw=1)
plt.show()
对于此示例中显示的参数,这些配合均无法捕获左侧的非平滑连接,也无法为右侧的“尾部”提供良好的配合:
预期结果的行为应类似于下图中的红色曲线,在这里我希望位置1处的曲线不平滑,位置2处的曲线平滑。
我很乐意引用合适的算法。如果还有python实现,那将是一个加分。
答案 0 :(得分:0)
这可能接近您想要的。技巧是首先对蒙版进行“骨架骨骼化”(见https://scikit-image.org/docs/dev/auto_examples/edges/plot_skeleton.html),以提取要估算曲线的点。
from skimage.morphology import skeletonize
import matplotlib.pyplot as plt
import cv2
import numpy as np
from scipy.interpolate import interp1d
img = cv2.imread("./data/bAiew.png", 0)
img = cv2.medianBlur(img, 11)
img = img//255
# Sparse skeleton
skeleton = skeletonize(img, method='lee')
# Into dense
contours, _ = cv2.findContours(skeleton, 0,cv2.CHAIN_APPROX_NONE)
arch = contours[0]
x,y = arch[...,0].squeeze(), arch[...,1].squeeze()
# Fitting a curve
xx, yy = x[0::15], y[0::15] #<- sample every 15th element to see that the interpolate really works
f = interp1d(xx, yy)
plt.figure(figsize=(16,9))
plt.subplot(221)
plt.imshow(img)
plt.title('original mask')
plt.subplot(222)
plt.imshow(skeleton)
plt.title('skeleton')
plt.subplot(223)
plt.scatter(xx,yy)
plt.ylim([img.shape[0],0])
plt.xlim([0, img.shape[1]])
plt.title('sampled points')
plt.subplot(224)
plt.plot(xx,f(xx))
plt.ylim([img.shape[0],0])
plt.xlim([0, img.shape[1]])
plt.title('interpolate')
plt.show()