来自预订和顺序遍历的二叉树

时间:2011-04-11 09:00:41

标签: data-structures tree binary-tree traversal

如何从这些pre / in顺序遍历中获取树形式:

Pre:A,B,D,E,C,F,G,H 在:E,d,B,A,G,F,H,C

已编辑:我的回答

       A
      / \
     B   C
    /     \
   D       F
  /       / \
 E       G   H

3 个答案:

答案 0 :(得分:2)

修改 更正,

你没有正确答案,FGH在C的左边。

验证只针对它运行两种算法:

PreOrder(node)
  if node is null return
  Print(node)
  PreOrder(node.left)
  PreOrder(node.Right)

InOrder(node)
  if node is null return
  InOrder(node.left)
  Print(node)
  InOrder(node.Right)

你知道A是根,因为它启动了预订。使用顺序排列A的左侧和右侧的节点.B是第二个节点(预订),左侧是A(按顺序),依此类推。

你知道F,G,H由于有序排列而留在C中。

基本上,使用preorder选择下一个节点,并按顺序查看它是在父节点的左侧还是右侧。

编辑(2011年4月18日)

为了展示这个过程的机械性,我提供了这个伪代码:

// Add method on binary tree class -- stock standard
method Add(item, comparer)
  newNode = new Node(item)
  parent = null

  // Find suitable parent
  currentNode = root
  while currentNode is not null
    parent = currentNode
    if comparer(newNode.Key, currentNode.Key) < 0
      currentNode = currentNode.Left
    else 
      currentNode = currentNode.Right

  // Add new node to parent
  if parent is null
    root = newNode
  else if comparer(newNode.Value, parent.Value) < 0 
    parent.Left = newNode
  else 
    parent.Right = newNode

诀窍是使用有序序列来确定节点是否添加到其父节点的左侧或右侧,例如:

// Client code
// Input arrays
var preOrder = ["A","B","D","E","C","F","G","H"]
var inOrder  = ["E","D","B","A","G","F","H","C"]
// A collection associating the Key value with its position in the inOrder array
var inOrderMap = GetInOrderMap(inOrder)

// Build tree from pre-order and in-order sequences
foreach (item in preOrder) 
  Add(item, fun (l, r) -> inOrderMap[l] - inOrderMap[r])

我正在传递lamba,但是传递比较器的任何等效方法都应该这样做。

答案 1 :(得分:0)

这是一种以非常简单的方式实现这一目标的数学方法:

使用的语言:Java

`
    / *     从给定的Inorder和Preorder遍历构造二叉树的算法。 以下是使用的术语:

i:代表提供的inorder数组

p:表示提供的预订单数组

beg1:inorder数组的起始索引

beg2:预编程数组的起始索引

end1:inorder数组的结束索引

end2:预编程数组的结束索引

* /

public static void constructTree(Node root,int [] i,int [] p,int beg1,int end1,int beg2,int end2)

{

if(beg1==end1 && beg2 == end2)
{
    root.data = i[beg1];
}
else if(beg1<=end1 && beg2<=end2)
{
    root.data = p[beg2];
    int mid = search(i, (int) root.data);
    root.left=new Node();
    root.right=new Node();
    constructTree(root.left, i, p, beg1, mid-1, beg2+1, beg2+mid-beg1);
    System.out.println("Printing root left : " + root.left.data);
    constructTree(root.right, i, p, mid+1, end1, beg2+1+mid-beg1, end2);
    System.out.println("Printing root left : " + root.right.data);
}

}

`

您需要通过以下代码调用该函数:

int[] i ={4,8,7,9,2,5,1,6,19,3,18,10}; //Inorder
int[] p ={1,2,4,7,8,9,5,3,6,19,10,18}; //Preorder
Node root1=new Node();
constructTree(root1, i, p, 0, i.length-1, 0, p.length-1);

如果您需要更详细的代码说明,请在评论中提及。我很乐意帮助:)。

答案 2 :(得分:-1)

以下是C#

中的工作实现
public static class TreeUtil
{
   public static BinarySearchTree<T> FromTraversals<T>(T[] preorder, T[] inorder)
   {
       if (preorder == null) throw new ArgumentNullException("preorder");
       if (inorder == null) throw new ArgumentNullException("inorder");
       if (preorder.Length != inorder.Length) throw new ArgumentException("inorder and preorder have different lengths");

       int n = preorder.Length;
       return new BinarySearchTree<T>(FromTraversals(preorder, 0, n - 1, inorder, 0, n - 1));
   }

   public static BinaryTreeNode<T> FromTraversals<T>(T[] preorder, int pstart, int pend, T[] inorder, int istart, int iend)
   {
       if (pstart > pend) return null;

       T rootVal = preorder[pstart];
       int rootInPos;
       for (rootInPos = istart; rootInPos <= iend; rootInPos++) //find rootVal in inorder
           if (Comparer<T>.Default.Compare(inorder[rootInPos], rootVal) == 0) break;

       if (rootInPos > iend)
           throw new ArgumentException("invalid inorder and preorder inputs");

       int offset = rootInPos - istart;
       return new BinaryTreeNode<T>(rootVal)
           {
               Left = FromTraversals(preorder, pstart + 1, pstart + offset, inorder, istart, istart + offset - 1),
               Right = FromTraversals(preorder, pstart + offset + 1, pend, inorder, istart + offset + 1, iend),
           };
   }
}

Here is one possible implementation of BinarySearchTree<T> and BinaryTreeNode<T>。一些测试:

[TestMethod]
public void TestGenerationFromTraversals()
{
  var preorder = new[] {1, 2, 4, 5, 3};
  var inorder = new[] {4, 2, 5, 1, 3};
  AssertGenerationFromTraversal(preorder, inorder);

  var preorder2 = new[] { 'A', 'B', 'D', 'E', 'C', 'F' };
  var inorder2 = new[] { 'D', 'B', 'E', 'A', 'F', 'C' };
  AssertGenerationFromTraversal(preorder2, inorder2);
}

private static void AssertGenerationFromTraversal<T>(T[] preorder, T[] inorder)
{
  var tree = BinarySearchTreeUtil.FromTraversals(preorder, inorder);

  var treeInorder = new List<T>();
  tree.TraverseInOrder(treeInorder.Add);
  var treePre = new List<T>();
  tree.TraversePreOrder(treePre.Add);

  Assert.IsTrue(preorder.SequenceEqual(treePre));
  Assert.IsTrue(inorder.SequenceEqual(treeInorder));
}