现在我有一个序列,其形状类似于图像序列,即(t,2,w,h),我想将此数据集与ARIMA一起应用以预测时间戳t + 1的值,即。 (t + 1、2,w,h),时间戳t + 1的预测值是二维的,但是statsmodel中的ARIMA模型需要输入1维的形状,如何解决此问题? 这是statsmodel.tsa.arima_model的实现:https://www.statsmodels.org/stable/_modules/statsmodels/tsa/arima_model.html#ARIMA
def _fit_start_params_hr(self, order, start_ar_lags=None):
"""
Get starting parameters for fit.
Parameters
----------
order : iterable
(p,q,k) - AR lags, MA lags, and number of exogenous variables
including the constant.
start_ar_lags : int, optional
If start_ar_lags is not None, rather than fitting an AR process
according to best BIC, fits an AR process with a lag length equal
to start_ar_lags.
Returns
-------
start_params : array
A first guess at the starting parameters.
Notes
-----
If necessary, fits an AR process with the laglength start_ar_lags, or
selected according to best BIC if start_ar_lags is None. Obtain the
residuals. Then fit an ARMA(p,q) model via OLS using these residuals
for a first approximation. Uses a separate OLS regression to find the
coefficients of exogenous variables.
References
----------
Hannan, E.J. and Rissanen, J. 1982. "Recursive estimation of mixed
autoregressive-moving average order." `Biometrika`. 69.1.
Durbin, J. 1960. "The Fitting of Time-Series Models."
`Review of the International Statistical Institute`. Vol. 28, No. 3
"""
p, q, k = order
start_params = zeros((p+q+k))
# make copy of endog because overwritten
endog = np.array(self.endog, np.float64)
输入endg的地方