世界的先知使用者,希望一切都好。我在处理一个特定的用例时遇到了一些困难,下面将尝试使用一些示例数据和代码来说明。首先,让我们生成一些样本数据,以便更轻松地了解我在说什么。
library(data.table)
library(prophet)
library(dplyr)
# one year of months to be used for generating predictions
ds = c('2016-01-01', '2016-02-01','2016-03-01','2016-04-01','2016-05-01','2016-06-01','2016-07-01','2016-08-01','2016-09-01','2016-10-01','2016-11-01','2016-12-01' )
# historical customer counts
y = c (78498,12356,93732,5556,410,10296,9779,744,16407,100484,23954,141398,10575,850,16334,17496,1643,28074,93181,
18770,129968,11590,850,16738,17510,1376,27931,94369,18444,134850,13386,919,19075,18050,1565,31296,112094,27995,
167094,13402,1422,22766,20072,2340,37863,87346,16180,119863,7691,725,16931,12163,1241,25872,87455,16322,116390,
6994,620,13524,11059,990,22188,105473,23652,154145,13520,1008,18857,19209,1632,31105,102252,21284,138779,11670,
918,16078,16679,1257,26755,115033,22415,139835,13965,936,18027,18642,1407,28622,155371,40556,174321,25119,1859,
35326,28844,2962,51582,108817,19158,109864,8693,756,14358,13390,1091,21419)
# the segment channels of the customers
segment_channel = c('Existing_Omni', 'Existing_Retail', 'Existing_Direct', 'NTB_Omni', 'NTB_Retail', 'NTB_Direct', 'React_Omni', 'React_Retail', 'React_Direct')
# an external regressor to be added to the model (in my data there are like 40 of these regressor variables that I would like too add)
flash_sale = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3)
fake_data = merge(ds,segment_channel, all.y=TRUE)
setnames(fake_data, 'x', 'ds')
setnames(fake_data, 'y', 'segment_channel')
nrow(fake_data) # should be 108 rows, the 9 customer segements for each of the months in 2016
# next join the known customer counts, let's say we have them for the first 8 months of the year
fake_data = cbind(fake_data, y)
fake_data = cbind(fake_data, flash_sale)
# set some of the y values to NA so we can pretend we are trying to predict them using the ds time series as well as the flash sale values,
# which will be known in advance
fake_data = as.data.table(fake_data)
fake_data$ds = as.Date(fake_data$ds)
fake_data[, y := ifelse(ds >= '2016-08-01', NA, y)]
此代码将生成与我为解决该问题所使用的数据非常相似的数据集,因此希望您可以重现我在做什么。我希望可以使用此数据完成两件事。第一个很简单,我希望能够明显地添加一个回归变量(例如本示例中的flash_sale到我创建的先知模型中。我可以这样轻松地做到这一点:
christ <- tibble(
holiday = 'christ',
ds = as.Date(c('2016-11-01', '2017-11-01', '2018-11-01',
'2019-11-01')),
lower_window = 0,
upper_window = 1
)
nye <- tibble(
holiday = 'nye',
ds = as.Date(c('2016-11-01', '2017-12-01', '2018-11-01',
'2019-11-01')),
lower_window = 0,
upper_window = 1
)
holidays <- bind_rows(nye, christ)
m <- prophet(holidays = holidays)
m<- add_regressor(m, name = "flash_sale")
m <- fit.prophet(m, fake_data)
forecast <- predict(m, fake_data)
prophet_plot_components(m, forecast)
这应该会生成一个难看的图,但是很容易看到给定的数据应该可以解决问题,并且我可以添加多行来添加其他回归值。好的,到目前为止我们都还不错。但是另一个问题是我要处理9个细分渠道,因此我不想为每个细分渠道建立单独的模型。幸运的是,我在堆栈溢出上找到了一个很好的链接,该链接完成了分组的先知预测:Using Prophet Package to Predict By Group in Dataframe in R
fcst = fake_data %>%
group_by(segment_channel) %>%
do(predict(prophet(., seasonality.mode = 'multiplicative', holidays = holidays, seasonality.prior.scale = 10, changepoint.prior.scale = .034), make_future_dataframe(prophet(.), periods = 11, freq='month'))) %>%
dplyr::select(ds, segment_channel, yhat)
fcst
> fcst
# A tibble: 207 x 3
# Groups: segment_channel [9]
ds segment_channel yhat
<dttm> <fct> <dbl>
1 2016-01-01 00:00:00 Existing_Direct 38712.
2 2016-02-01 00:00:00 Existing_Direct 40321.
3 2016-03-01 00:00:00 Existing_Direct 42648.
4 2016-04-01 00:00:00 Existing_Direct 45130.
5 2016-05-01 00:00:00 Existing_Direct 46580.
6 2016-06-01 00:00:00 Existing_Direct 49437.
7 2016-07-01 00:00:00 Existing_Direct 50651.
8 2016-08-01 00:00:00 Existing_Direct 52685.
9 2016-09-01 00:00:00 Existing_Direct 54719.
10 2016-10-01 00:00:00 Existing_Direct 56687.
# ... with 197 more rows
这或多或少正是我想要的!凉。因此,现在我所要做的就是弄清楚如何获得分组的预测,而我的回归分析程序会一步一步地添加。我知道我可以在do中包含多行语句,所以这是我为了使它起作用而尝试的方法:
> fcst = fake_data %>%
+ group_by(segment_channel) %>%
+ do(
+ predict(prophet(., seasonality.mode = 'multiplicative', holidays = holidays, seasonality.prior.scale = 10, changepoint.prior.scale = .034),
+ add_regressor(prophet(., holidays = holidays), name = 'flash_sale'),
+ fit.prophet(prophet(. , holidays = holidays)),
+ make_future_dataframe(prophet(.), periods = 11, freq='month'))) %>%
+ dplyr::select(ds, segment_channel, yhat)
Disabling yearly seasonality. Run prophet with yearly.seasonality=TRUE to override this.
Disabling weekly seasonality. Run prophet with weekly.seasonality=TRUE to override this.
Disabling daily seasonality. Run prophet with daily.seasonality=TRUE to override this.
n.changepoints greater than number of observations. Using 4
Disabling yearly seasonality. Run prophet with yearly.seasonality=TRUE to override this.
Disabling weekly seasonality. Run prophet with weekly.seasonality=TRUE to override this.
Disabling daily seasonality. Run prophet with daily.seasonality=TRUE to override this.
n.changepoints greater than number of observations. Using 4
Error in add_regressor(prophet(., holidays = holidays), name = "flash_sale") :
Regressors must be added prior to model fitting.
该死。看起来它正在运行,但是关于我如何添加回归器的事情却不是很清楚。接下来,我尝试了这种方式:
> fcst = fake_data %>%
+ group_by(segment_channel) %>%
+ do(
+ prophet(holidays = holidays),
+ add_regressor(prophet(., holidays = holidays), name = 'flash_sale'),
+ fit.prophet(prophet(. , holidays = holidays)),
+ predict(prophet(., seasonality.mode = 'multiplicative', holidays = holidays, seasonality.prior.scale = 10, changepoint.prior.scale = .034),
+ make_future_dataframe(prophet(.), periods = 11, freq='month'))) %>%
+ dplyr::select(ds, segment_channel, yhat)
Error: Can only supply one unnamed argument, not 4
Call `rlang::last_error()` to see a backtrace
> fcst = fake_data %>%
+ group_by(segment_channel) %>%
+ do(
+ add_regressor(prophet(., holidays = holidays), name = 'flash_sale'),
+ fit.prophet(prophet(. , holidays = holidays)),
+ predict(prophet(., seasonality.mode = 'multiplicative', holidays = holidays, seasonality.prior.scale = 10, changepoint.prior.scale = .034),
+ make_future_dataframe(prophet(.), periods = 11, freq='month'))) %>%
+ dplyr::select(ds, segment_channel, yhat)
Error: Can only supply one unnamed argument, not 3
Call `rlang::last_error()` to see a backtrace
我现在很困惑,所以我只是希望互联网上的一些东西可能知道我需要正确的咒语才能到达目的地。