我正在使用帖子Naive bayes in R中提到的klaR
包的predict
方法:
nb_testpred <- predict(mynb, newdata=testdata).
nb_testpred
是我的朴素贝叶斯模型,是在traindata
上开发的; testdata
是剩余的数据。
然而,我收到此错误:
Error in FUN(1:10[[4L]], ...) : subscript out of bounds
我不确定发生了什么 - testdata
的行数少于traindata
,列数相同。
作为参考,我的代码如下所示:
ind <- sample(2, nrow(mydata), replace=TRUE, prob=c(0.9,0.1))
traindata <- mydata[ind==1,]
testdata <- mydata[ind==2,]
myformula <- as.factor(dep) ~ X1 + as.factor(X2) + as.factor(X3) + as.factor(X4) + X5 + as.factor(X6) + as.factor(date) + as.factor(hour)
mynb <- NaiveBayes(myformula, data=traindata)
nb_testpred <- predict(mynb, newdata=testdata) #where I'm getting an error...
这里有一个数据样本(原始文件有100,000多行):
sampledata <- structure(list(dep = c(1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L), X1 = structure(c(2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L), .Label = c("A", "B"), class = "factor"), X2 = c(200L, 200L, 200L, 200L, 200L, 200L, 200L, 200L, 200L, 200L, 200L, 200L, 200L, 200L, 200L, 200L,
200L, 200L), X3 = structure(c(4L, 2L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L), .Label = c(".", "1400000", "2400000", "900000"), class = "factor"), X4 = c(0L, 0L, 0L, 3L, 4L, 5L, 5L, 5L, 5L, 0L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 0L), X5 = c(TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE), X6 = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), date = structure(c(1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L), .Label = c("9/23/2012",
"9/24/2012"), class = "factor"), hour = c(18L, 17L, 23L, 8L, 1L, 19L, 19L, 16L, 22L, 2L, 12L, 16L, 15L, 9L, 1L, 9L,
13L, 19L)), .Names = c("dep", "X1", "X2", "X3", "X4", "X5", "X6", "date", "hour"), class = "data.frame", row.names = c(NA, -18L))
非常感谢任何帮助!
答案 0 :(得分:0)
您可以按以下方式行事:
traindata$dep=factor(traindata$dep)
mynb <- NaiveBayes(dep~.,traindata)
然后它可以工作,但是你应该优化你的数据以避免使用常量列。