使用软件包“ MuMIn”中的“ model.avg()”对GLM模型求平均时出错

时间:2019-04-30 10:37:57

标签: r glm mumin

我正在使用glmer()分析一些数据。我正在学习R和建模时,请多多包涵。

我的数据由两个预测变量AreaDay_Night组成,我用它们来解释StandingFeedingForaging中给定行为的发生

因为我有几个人的数据,所以我希望对为每个人选择的最佳模型取平均值,而该模型恰好具有与我已经计算过的AICc值相同的累加效果。该模型是:

best_model_individual1<-glmer(cbind(Standing,Feeding_Foraging) ~ Day_Night + Area+(1|ID) , data=GLM_df , family=binomial) 

但是,当平均每个人的最佳模型时,我得到了错误:

> models<- list(best_model_individual1,best_model_individual2,best_model_individual3)
> averages<-model.avg(models, beta = c("none"),
+           rank = NULL, rank.args = NULL, revised.var = TRUE,
+           dispersion = NULL, ct.args = NULL)
Error in model.avg.default(models, beta = c("none"), rank = NULL, rank.args = NULL,  : 
  models are not all fitted to the same data

我不确定这是否是由于我的函数参数可能存在错误,还是因为无法通过统计得出此类平均值。

我希望有人可以推动我!任何输入表示赞赏。

我正在为以下单个1提供dput()模型中使用的数据样本:

> dput(GLM_df)
structure(list(V1 = 1:144, hour = c(0L, 1L, 2L, 3L, 4L, 5L, 6L, 
7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 
20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 
0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L, 
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 
18L, 19L, 20L, 21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 
21L, 22L, 23L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L), 
    Feeding = c(4L, 3L, 2L, 7L, 8L, 7L, 7L, 7L, 6L, 7L, 8L, 7L, 
    7L, 7L, 9L, 13L, 5L, 4L, 3L, 5L, 5L, 7L, 5L, 5L, 7L, 5L, 
    5L, 11L, 14L, 10L, 9L, 9L, 9L, 9L, 10L, 9L, 10L, 9L, 10L, 
    9L, 8L, 5L, 4L, 8L, 11L, 11L, 11L, 9L, 6L, 3L, 3L, 8L, 11L, 
    11L, 9L, 9L, 9L, 9L, 10L, 9L, 10L, 9L, 7L, 9L, 8L, 3L, 4L, 
    6L, 7L, 10L, 7L, 7L, 4L, 4L, 2L, 8L, 11L, 11L, 9L, 10L, 9L, 
    8L, 8L, 7L, 6L, 6L, 5L, 2L, 4L, 3L, 3L, 4L, 4L, 6L, 7L, 6L, 
    4L, 4L, 3L, 6L, 7L, 6L, 5L, 6L, 5L, 4L, 4L, 5L, 4L, 3L, 3L, 
    2L, 4L, 3L, 3L, 4L, 4L, 4L, 5L, 4L, 7L, 3L, 4L, 6L, 5L, 6L, 
    7L, 9L, 8L, 8L, 10L, 10L, 10L, 8L, 6L, 5L, 8L, 5L, 3L, 6L, 
    6L, 7L, 6L, 6L), Foraging = c(23L, 24L, 24L, 19L, 18L, 20L, 
    18L, 19L, 19L, 17L, 16L, 17L, 17L, 17L, 14L, 10L, 20L, 24L, 
    24L, 22L, 21L, 21L, 21L, 22L, 18L, 20L, 21L, 9L, 5L, 9L, 
    10L, 12L, 12L, 10L, 10L, 10L, 9L, 9L, 7L, 5L, 14L, 20L, 20L, 
    16L, 11L, 12L, 12L, 15L, 15L, 19L, 18L, 7L, 5L, 5L, 9L, 9L, 
    9L, 8L, 6L, 8L, 7L, 8L, 6L, 5L, 10L, 17L, 17L, 15L, 13L, 
    12L, 13L, 13L, 22L, 24L, 26L, 10L, 3L, 6L, 8L, 9L, 9L, 6L, 
    7L, 8L, 8L, 6L, 3L, 2L, 8L, 24L, 23L, 18L, 15L, 14L, 15L, 
    19L, 19L, 21L, 24L, 10L, 4L, 6L, 8L, 8L, 6L, 6L, 7L, 6L, 
    6L, 6L, 3L, 3L, 11L, 23L, 24L, 21L, 18L, 17L, 11L, 16L, 19L, 
    23L, 22L, 6L, 5L, 5L, 7L, 7L, 8L, 8L, 7L, 9L, 6L, 4L, 3L, 
    2L, 7L, 22L, 20L, 18L, 15L, 12L, 12L, 15L), Standing = c(1L, 
    1L, 2L, 4L, 4L, 2L, 5L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 
    2L, 1L, 1L, 2L, 1L, 2L, 3L, 2L, 2L, 2L, 1L, 6L, 7L, 7L, 6L, 
    5L, 5L, 6L, 4L, 6L, 6L, 8L, 9L, 12L, 3L, 2L, 2L, 3L, 4L, 
    5L, 3L, 4L, 4L, 4L, 4L, 8L, 9L, 8L, 5L, 6L, 6L, 5L, 8L, 7L, 
    7L, 6L, 10L, 12L, 6L, 3L, 3L, 4L, 5L, 5L, 5L, 5L, 6L, 5L, 
    3L, 12L, 16L, 14L, 12L, 11L, 13L, 15L, 15L, 15L, 16L, 18L, 
    23L, 28L, 17L, 5L, 5L, 9L, 12L, 12L, 13L, 8L, 9L, 5L, 4L, 
    13L, 19L, 19L, 17L, 17L, 19L, 20L, 20L, 19L, 20L, 22L, 24L, 
    28L, 15L, 5L, 4L, 7L, 12L, 10L, 14L, 11L, 7L, 8L, 5L, 19L, 
    23L, 20L, 16L, 13L, 14L, 14L, 13L, 13L, 13L, 18L, 21L, 24L, 
    16L, 6L, 8L, 9L, 12L, 14L, 13L, 11L), ID = c("41361", "41361", 
    "41361", "41361", "41361", "41361", "41361", "41361", "41361", 
    "41361", "41361", "41361", "41361", "41361", "41361", "41361", 
    "41361", "41361", "41361", "41361", "41361", "41361", "41361", 
    "41361", "41365", "41365", "41365", "41365", "41365", "41365", 
    "41365", "41365", "41365", "41365", "41365", "41365", "41365", 
    "41365", "41365", "41365", "41365", "41365", "41365", "41365", 
    "41365", "41365", "41365", "41365", "41366", "41366", "41366", 
    "41366", "41366", "41366", "41366", "41366", "41366", "41366", 
    "41366", "41366", "41366", "41366", "41366", "41366", "41366", 
    "41366", "41366", "41366", "41366", "41366", "41366", "41366", 
    "41366bis", "41366bis", "41366bis", "41366bis", "41366bis", 
    "41366bis", "41366bis", "41366bis", "41366bis", "41366bis", 
    "41366bis", "41366bis", "41366bis", "41366bis", "41366bis", 
    "41366bis", "41366bis", "41366bis", "41366bis", "41366bis", 
    "41366bis", "41366bis", "41366bis", "41366bis", "41367", 
    "41367", "41367", "41367", "41367", "41367", "41367", "41367", 
    "41367", "41367", "41367", "41367", "41367", "41367", "41367", 
    "41367", "41367", "41367", "41367", "41367", "41367", "41367", 
    "41367", "41367", "41368", "41368", "41368", "41368", "41368", 
    "41368", "41368", "41368", "41368", "41368", "41368", "41368", 
    "41368", "41368", "41368", "41368", "41368", "41368", "41368", 
    "41368", "41368", "41368", "41368", "41368"), Area = structure(c(2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("Loliondo", "Seronera"
    ), class = "factor"), Feeding_Foraging = c(27L, 27L, 27L, 
    26L, 25L, 27L, 25L, 26L, 25L, 24L, 24L, 24L, 24L, 24L, 23L, 
    23L, 25L, 28L, 27L, 27L, 27L, 27L, 27L, 27L, 25L, 25L, 26L, 
    19L, 19L, 19L, 20L, 21L, 20L, 20L, 20L, 19L, 19L, 18L, 16L, 
    14L, 22L, 25L, 24L, 24L, 22L, 22L, 23L, 23L, 21L, 22L, 21L, 
    16L, 15L, 16L, 18L, 18L, 17L, 17L, 16L, 17L, 17L, 17L, 13L, 
    14L, 18L, 21L, 22L, 21L, 20L, 22L, 20L, 20L, 10L, 9L, 6L, 
    20L, 27L, 25L, 22L, 21L, 21L, 23L, 23L, 22L, 22L, 24L, 28L, 
    30L, 21L, 8L, 8L, 13L, 17L, 18L, 19L, 15L, 22L, 26L, 27L, 
    16L, 11L, 11L, 13L, 13L, 11L, 10L, 11L, 11L, 10L, 9L, 6L, 
    5L, 15L, 26L, 27L, 25L, 22L, 21L, 16L, 20L, 26L, 26L, 26L, 
    11L, 10L, 12L, 15L, 16L, 16L, 16L, 17L, 18L, 17L, 12L, 10L, 
    8L, 15L, 27L, 24L, 24L, 21L, 19L, 18L, 21L), Feeding_Standing = c(4L, 
    4L, 4L, 11L, 11L, 10L, 12L, 10L, 10L, 10L, 11L, 10L, 10L, 
    11L, 13L, 17L, 7L, 5L, 4L, 7L, 6L, 9L, 8L, 7L, 9L, 7L, 6L, 
    16L, 21L, 16L, 15L, 14L, 14L, 15L, 15L, 15L, 16L, 17L, 19L, 
    21L, 11L, 7L, 6L, 11L, 16L, 15L, 14L, 13L, 10L, 7L, 7L, 16L, 
    19L, 18L, 14L, 15L, 14L, 14L, 18L, 16L, 17L, 15L, 17L, 21L, 
    14L, 6L, 8L, 10L, 13L, 15L, 12L, 12L, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, 12L, 10L, 7L, 19L, 26L, 25L, 22L, 23L, 24L, 
    25L, 24L, 24L, 25L, 25L, 27L, 29L, 19L, 7L, 7L, 11L, 15L, 
    14L, 19L, 15L, 14L, 11L, 10L, 25L, 28L, 26L, 23L, 22L, 22L, 
    22L, 24L, 23L, 24L, 26L, 28L, 29L, 24L, 10L, 12L, 15L, 17L, 
    20L, 18L, 18L), Standing_Foraging = c(24L, 25L, 26L, 23L, 
    21L, 22L, 22L, 22L, 22L, 20L, 18L, 20L, 21L, 21L, 18L, 14L, 
    22L, 25L, 25L, 24L, 23L, 23L, 24L, 24L, 20L, 22L, 22L, 14L, 
    12L, 16L, 16L, 17L, 17L, 16L, 15L, 16L, 15L, 17L, 16L, 17L, 
    17L, 22L, 22L, 18L, 15L, 16L, 15L, 19L, 20L, 23L, 22L, 15L, 
    13L, 13L, 14L, 15L, 14L, 13L, 14L, 15L, 14L, 13L, 16L, 17L, 
    16L, 20L, 21L, 19L, 18L, 16L, 19L, 18L, 28L, 29L, 30L, 22L, 
    19L, 20L, 21L, 20L, 21L, 21L, 22L, 22L, 24L, 24L, 26L, 30L, 
    26L, 29L, 28L, 27L, 28L, 26L, 27L, 27L, 28L, 27L, 28L, 23L, 
    23L, 25L, 25L, 25L, 26L, 26L, 26L, 25L, 26L, 27L, 28L, 30L, 
    26L, 28L, 28L, 28L, 30L, 26L, 25L, 27L, 27L, 31L, 28L, 25L, 
    28L, 25L, 23L, 21L, 22L, 23L, 20L, 21L, 20L, 22L, 24L, 27L, 
    23L, 28L, 28L, 27L, 26L, 26L, 24L, 26L), Day_Night = structure(c(2L, 
    2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L), .Label = c("Day", "Night"
    ), class = "factor")), row.names = c(NA, -144L), class = c("data.table", 
"data.frame"), .internal.selfref = <pointer: 0x00000000025e1ef0>)

0 个答案:

没有答案