我从R中的MuMIn::dredge
函数收到一些错误,并且不知道如何解决它。
Here是我的数据......
library(lme4)
library(MuMIn)
library(arm)
我构建了一个全局模型:
options(na.action = "na.fail")
global.model<-lmer(yld.res ~ rain + brk+ act +
onset + wid + (1|state),data=dat,REML=FALSE)
stdz.model <- standardize(global.model,standardize.y = FALSE)
model.set <- dredge(stdz.model)
我收到以下错误,我不知道为什么会发生这种情况。为了澄清,yld.res
是从每个yld
year
对state
的线性回归得到的残差。如果我使用dredge
作为回复,则yld
可以正常工作。任何帮助或建议将不胜感激。
Fixed term is "(Intercept)"
Warning messages:
1: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
unable to evaluate scaled gradient
2: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge: degenerate Hessian with 1 negative eigenvalues
3: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
unable to evaluate scaled gradient
4: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge: degenerate Hessian with 1 negative eigenvalues
5: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
unable to evaluate scaled gradient
6: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge: degenerate Hessian with 1 negative eigenvalues
7: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
unable to evaluate scaled gradient
8: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge: degenerate Hessian with 1 negative eigenvalues
答案 0 :(得分:2)
tl; dr 我认为这些都是误报。我没有在数据或模型中看到任何可疑的东西。可能性曲线在估计空间的边缘处是完全平坦的,这使得收敛检查变得紧张(这是不寻常的,但它没有任何问题)。
复制您的设置:
dd <- read.csv("SOtmpdat.csv")
library(lme4)
library(MuMIn)
library(arm)
options(na.action = "na.fail")
global.model <- lmer(yld.res ~ rain + brk+ act + onset +
wid + (1|state), data=dd,REML=FALSE)
stdz.model <- standardize(global.model,standardize.y = FALSE)
model.set <- dredge(stdz.model)
查看数据:
library(ggplot2); theme_set(theme_bw())
library(reshape2)
mm <- melt(dd,id.var=c("year","state","yld.res"))
ggplot(mm,aes(value,yld.res,colour=state))+geom_point()+
facet_wrap(~variable,scale="free")+geom_smooth(method="lm")
在这里没有多少事情,但也没有什么太奇怪的了。
查看标准化模型的系数:
library(dotwhisker)
dwplot(stdz.model)+geom_vline(xintercept=0,lty=2)
预测因素之间没有巨大的成对相关性:
cor(as.matrix(dd[,3:8]))
pairs(as.matrix(dd[,3:8]),gap=0,cex=0.5)
让我们找一个打破的模型之一:
options(warn=1)
model.set <- dredge(stdz.model,trace=TRUE)
试一试:
test1 <- lmer(formula = yld.res ~ z.brk + z.onset + (1 | state),
data = model.frame(stdz.model),
REML = FALSE)
仔细看看:
mf <- transform(model.frame(stdz.model),
z.onset.cat=cut_number(z.onset,4))
ggplot(mf,
aes(z.brk,yld.res,
colour=state))+geom_point()+
facet_wrap(~z.onset.cat)
再一次,没什么好笑的。
让我们手工探索模型拟合:只有一个显式参数(状态间标准偏差)。
tt <- as.function(test1)
tvec <- seq(0,1,length=501)
dvec <- sapply(tvec,tt)
par(las=1,bty="l")
plot(tvec,dvec,type="l")
看起来很好。