模块化算术。如何求解以下方程式?

时间:2019-04-19 20:17:44

标签: number-theory modular-arithmetic

如何求解以下方程式?

我对解决方法感兴趣。

n ^ 3 mod P =(n + 1)^ 3 mod P

P-素数

简短示例和答案。 您能否为我的示例提供逐步的解决方案。

n ^ 3 mod 61 =(n + 1)^ 3 mod 61

整数解决方案:

n = 61 m + 4,

n = 61 m + 56,

m个元素Z

Z-是整数集。

1 个答案:

答案 0 :(得分:1)

陈述n^3 ≡ (n+1)^3的另一种方式是n^3 ≡ n^3 + 3 n^2 + 3 n + 1(只需计算n + 1的立方),然后抵消三次项以给出更好的二次3 n^2 + 3 n + 1 ≡ 0

然后使用通常的二次方程式,尽管它的所有运算现在都是模P,并且行列式并不总是二次残差,在这种情况下,原始方程式没有解(大约发生一半的时间)。这涉及找到以质数为模的平方根,对于计算机而言,使用Tonelli–Shanks算法并不难,尽管实现起来并不容易。

顺便说一下,3 n^2 + 3 n + 1 = 0具有以下性质:如果n是解决方案,那么-n - 1也是。

例如,对于某些Python,一旦所有支持功能都存在,它就非常简单:

def solve(p):
  # solve 3 n^2 + 3 n + 1 ≡ 0
  D = -3 % p
  sqrtD = modular_sqrt(D, p)
  if sqrtD == 0:
    return None
  else:
    n = (sqrtD - 3) * inverse(6, p) % p
    return (n, -(n+1) % p)

对素数取反的模数真的很容易,

def inverse(x, p):
  return pow(x, p - 2, p)

我使this implementation of Tonelli-Shanks适应了Python3(对于整数除法,是//而不是/

def modular_sqrt(a, p):
    """ Find a quadratic residue (mod p) of 'a'. p
        must be an odd prime.

        Solve the congruence of the form:
            x^2 = a (mod p)
        And returns x. Note that p - x is also a root.

        0 is returned is no square root exists for
        these a and p.

        The Tonelli-Shanks algorithm is used (except
        for some simple cases in which the solution
        is known from an identity). This algorithm
        runs in polynomial time (unless the
        generalized Riemann hypothesis is false).
    """
    # Simple cases
    #
    if legendre_symbol(a, p) != 1:
        return 0
    elif a == 0:
        return 0
    elif p == 2:
        return 0
    elif p % 4 == 3:
        return pow(a, (p + 1) // 4, p)

    # Partition p-1 to s * 2^e for an odd s (i.e.
    # reduce all the powers of 2 from p-1)
    #
    s = p - 1
    e = 0
    while s % 2 == 0:
        s //= 2
        e += 1

    # Find some 'n' with a legendre symbol n|p = -1.
    # Shouldn't take long.
    #
    n = 2
    while legendre_symbol(n, p) != -1:
        n += 1

    # Here be dragons!
    # Read the paper "Square roots from 1; 24, 51,
    # 10 to Dan Shanks" by Ezra Brown for more
    # information
    #

    # x is a guess of the square root that gets better
    # with each iteration.
    # b is the "fudge factor" - by how much we're off
    # with the guess. The invariant x^2 = ab (mod p)
    # is maintained throughout the loop.
    # g is used for successive powers of n to update
    # both a and b
    # r is the exponent - decreases with each update
    #
    x = pow(a, (s + 1) // 2, p)
    b = pow(a, s, p)
    g = pow(n, s, p)
    r = e

    while True:
        t = b
        m = 0
        for m in range(r):
            if t == 1:
                break
            t = pow(t, 2, p)

        if m == 0:
            return x

        gs = pow(g, 2 ** (r - m - 1), p)
        g = (gs * gs) % p
        x = (x * gs) % p
        b = (b * g) % p
        r = m


def legendre_symbol(a, p):
    """ Compute the Legendre symbol a|p using
        Euler's criterion. p is a prime, a is
        relatively prime to p (if p divides
        a, then a|p = 0)

        Returns 1 if a has a square root modulo
        p, -1 otherwise.
    """
    ls = pow(a, (p - 1) // 2, p)
    return -1 if ls == p - 1 else ls

您可以在ideone

上看到一些结果