我正在尝试查找具有以下属性的集合中不同向量的数量:
示例
k = 3,d = 3,v = 6,结果是7;
<1、2、3>,<1、3、2>,<2、1、3>,<2、2、2>,<2、3、1>,<3、1、2>,<3 ,2,1>
k = 4,d = 2,v = 7,结果是2;
<3,4>,<4,3>
在这种情况下,<2,5>无效,因为5超过了k的值。
我想找出是否有一个数学公式来计算结果。如果没有公式,该算法的执行效率如何?我发现了一个相当神秘的实现,但是我想知道是否可以改进它。
public static int NumberOfDistinctVectors(int k, int d ,int v) {
if((v > k * d) || (v < d)) return 0;
if(d == 1 || v == d) return 1;
if(v == d + 1) return d;
int alpha = 1, beta = 0;
if(1 < v + k - k * d)
alpha = v + k - k * d;
if(k < v - d + 1)
beta = k;
else
beta = v - d + 1;
int sum = 0;
for(int i = alpha; i <= beta; i++) {
sum += NumberOfDistinctVectors(k, d-1, v-i);
}
return sum;
}
答案 0 :(得分:4)
该问题与以下内容非常相关:
将
b
组中的c
个相同对象分布在一起的组合数量是多少 没有哪个群组包含超过n
个对象?
在here中进行了讨论
仅考虑您的数字是由对象(+1)组成的。因此,就您而言
找到以下代码(将c(N,K)
使用appache-commons)
public static int NumberOfDistinctVectors(int k, int d ,int v) {
return combinations(v-d, d, k-1);
}
//combinations to distribute b identical objects to c groups
//where no group has more than n objects
public static int combinations(int b, int c, int n)
{
int sum = 0;
for(int i = 0; i <= c; i++)
{
if(b+c-1-i*(n+1) >= c-1)
sum += Math.pow(-1, i) * CombinatoricsUtils.binomialCoefficient(c, i)
* CombinatoricsUtils.binomialCoefficient(b+c-1-i*(n+1), c-1);
}
return sum;
}
让我也引用原始答案:
”这实际上是否比复发更有用 另一个问题”
答案 1 :(得分:2)
这是另一种可能更有效的计数方法。它基于permutations with repetition的公式。我在代码中添加了注释,希望它使跟踪变得更容易。
public static int NumberOfDistinctVectors2(int k, int d, int v)
{
return NumberOfDistinctVectors2_rec(1, 0, k, d, v, 1, 1);
}
public static int NumberOfDistinctVectors2_rec(
int i, /* Current number being added */
int j, /* Amount of already picked numbers */
int k, /* Maximum number that can be picked */
int d, /* Total amount of numbers to pick */
int v, /* Remaining value */
long num, /* Numerator in "permutations with repetition" formula */
long den) /* Denominator in "permutations with repetition" formula */
{
// Amount of remaining numbers to pick
int rem = d - j;
// Remaining value is too big or too small
if (v < i * rem || v > k * rem) return 0;
// If no numbers to add then we are done
if (rem == 0) return Math.toIntExact(num / den);
// If only one number to add this can be used as a "shortcut"
if (rem == 1) return d * Math.toIntExact(num / den);
// Counted permutations
int count = 0;
// Maximum amount of repetitions for the current number
int maxRep = Math.min(v / i, rem);
// Factor to multiply the numerator
int numFactor = 1;
// Factor to multiply the denominator
int denFactor = 1;
// Consider adding repetitions of the current number
for (int r = 1; r <= maxRep; r++)
{
// The numerator is the factorial of the total amount of numbers
numFactor *= (j + r);
// The denominator is the product of the factorials of the number of repetitions of each number
denFactor *= r;
// We add "r" repetitions of the current number and count all possible permutations from there
count += NumberOfDistinctVectors2_rec(i + 1, j + r, k, d, v - i * r, num * numFactor, den * denFactor);
}
// Consider permutations that do not include the current number
count += NumberOfDistinctVectors2_rec(i + 1, j, k, d, v, num, den);
return count;
}
这里是一门小类测试它,这种方法看起来要快得多(see it in Rextester)。
class NumberOfDistinctVectorsTest
{
// Original method
public static int NumberOfDistinctVectors(int k, int d ,int v)
{
if((v > k * d) || (v < d)) return 0;
if(d == 1 || v == d) return 1;
if(v == d + 1) return d;
int alpha = 1, beta = 0;
if(1 < v + k - k * d)
alpha = v + k - k * d;
if(k < v - d + 1)
beta = k;
else
beta = v - d + 1;
int sum = 0;
for(int i = alpha; i <= beta; i++)
{
sum += NumberOfDistinctVectors(k, d-1, v-i);
}
return sum;
}
// New method
public static int NumberOfDistinctVectors2(int k, int d, int v)
{
return NumberOfDistinctVectors2_rec(1, 0, k, d, v, 1, 1);
}
public static int NumberOfDistinctVectors2_rec(int i, int j, int k, int d, int v, long num, long den)
{
int rem = d - j;
if (v < i * rem || v > k * rem) return 0;
if (rem == 0) return Math.toIntExact(num / den);
if (rem == 1) return d * Math.toIntExact(num / den);
int count = 0;
int maxRep = Math.min(v / i, rem);
int numFactor = 1;
int denFactor = 1;
for (int r = 1; r <= maxRep; r++)
{
numFactor *= (j + r);
denFactor *= r;
count += NumberOfDistinctVectors2_rec(i + 1, j + r, k, d, v - i * r, num * numFactor, den * denFactor);
}
count += NumberOfDistinctVectors2_rec(i + 1, j, k, d, v, num, den);
return count;
}
public static void main(final String[] args)
{
// Test 1
System.out.println(NumberOfDistinctVectors(3, 3, 6));
System.out.println(NumberOfDistinctVectors2(3, 3, 6));
// Test 2
System.out.println(NumberOfDistinctVectors(4, 2, 7));
System.out.println(NumberOfDistinctVectors2(4, 2, 7));
// Test 3
System.out.println(NumberOfDistinctVectors(12, 5, 20));
System.out.println(NumberOfDistinctVectors2(12, 5, 20));
// Test runtime
long startTime, endTime;
int reps = 100;
startTime = System.nanoTime();
for (int i = 0; i < reps; i++)
{
NumberOfDistinctVectors(12, 5, 20);
}
endTime = System.nanoTime();
double t1 = ((endTime - startTime) / (reps * 1000.));
startTime = System.nanoTime();
for (int i = 0; i < reps; i++)
{
NumberOfDistinctVectors2(12, 5, 20);
}
endTime = System.nanoTime();
double t2 = ((endTime - startTime) / (reps * 1000.));
System.out.println("Original method: " + t1 + "ms");
System.out.println("New method: " + t2 + "ms");
}
}
输出:
7
7
2
2
3701
3701
Original method: 45.64331ms
New method: 5.89364ms
编辑:包括JDoodle在内的新测试(使用Apache Commons 3.6.1在SaiBot's answer上运行):
import org.apache.commons.math3.util.CombinatoricsUtils;
public class NumberOfDistinctVectorsTest
{
// Original method
public static int NumberOfDistinctVectors(int k, int d ,int v)
{
if((v > k * d) || (v < d)) return 0;
if(d == 1 || v == d) return 1;
if(v == d + 1) return d;
int alpha = 1, beta = 0;
if(1 < v + k - k * d)
alpha = v + k - k * d;
if(k < v - d + 1)
beta = k;
else
beta = v - d + 1;
int sum = 0;
for(int i = alpha; i <= beta; i++)
{
sum += NumberOfDistinctVectors(k, d-1, v-i);
}
return sum;
}
// jdehesa method
public static int NumberOfDistinctVectors2(int k, int d, int v)
{
return NumberOfDistinctVectors2_rec(1, 0, k, d, v, 1, 1);
}
public static int NumberOfDistinctVectors2_rec(int i, int j, int k, int d, int v, long num, long den)
{
int rem = d - j;
if (v < i * rem || v > k * rem) return 0;
if (rem == 0) return Math.toIntExact(num / den);
if (rem == 1) return d * Math.toIntExact(num / den);
int count = 0;
int maxRep = Math.min(v / i, rem);
int numFactor = 1;
int denFactor = 1;
for (int r = 1; r <= maxRep; r++)
{
numFactor *= (j + r);
denFactor *= r;
count += NumberOfDistinctVectors2_rec(i + 1, j + r, k, d, v - i * r, num * numFactor, den * denFactor);
}
count += NumberOfDistinctVectors2_rec(i + 1, j, k, d, v, num, den);
return count;
}
// SaiBot method
public static int NumberOfDistinctVectors3(int k, int d ,int v)
{
return combinations(v-d, d, k-1);
}
//combinations to distribute b identical objects to c groups
//where no group has more than n objects
public static int combinations(int b, int c, int n)
{
int sum = 0;
for(int i = 0; i <= c; i++)
{
if(b+c-1-i*(n+1) >= c-1)
sum += Math.pow(-1, i) * CombinatoricsUtils.binomialCoefficient(c, i)
* CombinatoricsUtils.binomialCoefficient(b+c-1-i*(n+1), c-1);
}
return sum;
}
public static void main(final String[] args)
{
// Test 1
System.out.println(NumberOfDistinctVectors(3, 3, 6));
System.out.println(NumberOfDistinctVectors2(3, 3, 6));
System.out.println(NumberOfDistinctVectors3(3, 3, 6));
// Test 2
System.out.println(NumberOfDistinctVectors(4, 2, 7));
System.out.println(NumberOfDistinctVectors2(4, 2, 7));
System.out.println(NumberOfDistinctVectors3(4, 2, 7));
// Test 3
System.out.println(NumberOfDistinctVectors(12, 5, 20));
System.out.println(NumberOfDistinctVectors2(12, 5, 20));
System.out.println(NumberOfDistinctVectors3(12, 5, 20));
// Test runtime
long startTime, endTime;
int reps = 100;
startTime = System.nanoTime();
for (int i = 0; i < reps; i++)
{
NumberOfDistinctVectors(12, 5, 20);
}
endTime = System.nanoTime();
double t1 = ((endTime - startTime) / (reps * 1000.));
startTime = System.nanoTime();
for (int i = 0; i < reps; i++)
{
NumberOfDistinctVectors2(12, 5, 20);
}
endTime = System.nanoTime();
double t2 = ((endTime - startTime) / (reps * 1000.));
startTime = System.nanoTime();
for (int i = 0; i < reps; i++)
{
NumberOfDistinctVectors3(12, 5, 20);
}
endTime = System.nanoTime();
double t3 = ((endTime - startTime) / (reps * 1000.));
System.out.println("Original method: " + t1 + "ms");
System.out.println("jdehesa method: " + t2 + "ms");
System.out.println("SaiBot method: " + t3 + "ms");
}
}
输出:
7
7
7
2
2
2
3701
3701
3701
Original method: 97.81325ms
jdehesa method: 7.2753ms
SaiBot method: 2.70861ms
在JDoodle中计时不是很稳定(之所以使用它是因为它允许Maven依赖),但总的来说,SaiBot的方法是最快的。