如何根据dataframe1中的值从dataframe2子集并将所有子集堆叠到R中的一个数据帧中?

时间:2019-04-13 14:24:41

标签: r dataframe apply

我想创建一个函数,该函数采用数据帧df1的行(具有列x1,x2,x3),并且此函数的输出是数据帧df2的子集(具有y1,y2列),该子集为根据df1行中的值计算得出。我想将此功能应用于df1的每一行,并将结果数据帧(df2的子集)堆叠在一个大数据帧中。示例如何使用for循环来完成: df1的示例:

x1   x2   x3
a    3.1  4.5
b    9.0  10.1
a    9.0  20.0
c    1.1  6.0

df2示例:

y1  y2
a   4.0
a   10.0
a   3.5
b   9.8
b   9.5
b   25.0
c   8.2
c   12.0

进行此处理的for循环示例:

desired_df = df2[1, ]
for (i in 1:nrow(df1)) {
  subset = filter(df2, y1 == df1[i, "x1"] & y2 > df1[i, "x2"] & y2 < df1[i, "x3"])
  desired_df = rbind(desired_df, subset)
}
desired_df = desired_df[-1, ]

所需的数据帧是:

  y1   y2
  a  4.0
  a  3.5
  b  9.8
  b  9.5
  a 10.0

根据df1中的值,子设置可以提供不同长度的数据帧(有时没有元素) 问题是:如何编写这种向量化形式的子集和追加过程,而无需for循环?

1 个答案:

答案 0 :(得分:0)

好像我们需要一个fuzzy_join

library(dplyr)
library(fuzzyjoin)
fuzzy_inner_join(df1, df2, by = c('x1' = 'y1', 'x2' = 'y2', 'x3' = 'y2'),
          match_fun = list(`==`, `<=`, `>`)) %>%
    select(names(df2))
#  y1   y2
#1  a  4.0
#2  a  3.5
#3  b  9.8
#4  b  9.5
#5  a 10.0

数据

df1 <- structure(list(x1 = c("a", "b", "a", "c"), x2 = c(3.1, 9, 9, 
1.1), x3 = c(4.5, 10.1, 20, 6)), class = "data.frame", row.names = c(NA, 
-4L))

df2 <- structure(list(y1 = c("a", "a", "a", "b", "b", "b", "c", "c"), 
    y2 = c(4, 10, 3.5, 9.8, 9.5, 25, 8.2, 12)), class = "data.frame", 
    row.names = c(NA, 
-8L))