这是一个类似的问题:cross join/merge to create dataframe of combinations (order doesn't matter)
df = pd.DataFrame({'zone2': ['IL', 'IL-1', 'IL-3', 'IL'],
'city': ['Chicago', 'St.Louis', 'Monmouth', 'DesMoines'],
'zone1': ['Mid', 'Mid', 'Mid', 'Mid']})
我想创建column = city的所有组合的第二个数据框。
这就是我这样做的方式,但必须有一种有效的方法,以更少的步骤完成这项工作。
df2 = pd.DataFrame(list(itertools.combinations(list(df['city']), 2)))
df2.columns = ['city_1', 'city_2']
df2 = df2.merge(df, left_on='city_1', right_on='city').merge(df, left_on='city_2', right_on='city', suffixes=('_x', '_y'))
df2.drop(['city_x', 'city_y'], axis=1, inplace=True)
>>> df2
city_1 city_2 zone1_x zone2_x zone1_y zone2_y
0 Chicago St.Louis Mid IL Mid IL-1
1 Chicago Monmouth Mid IL Mid IL-3
2 St.Louis Monmouth Mid IL-1 Mid IL-3
3 Chicago DesMoines Mid IL Mid IL
4 St.Louis DesMoines Mid IL-1 Mid IL
5 Monmouth DesMoines Mid IL-3 Mid IL>
答案 0 :(得分:1)
from itertools import combinations
>>> pd.DataFrame(
(pair[0] + pair[1]
for pair in (df.loc[df.city == a].values.tolist() +
df.loc[df.city == b].values.tolist()
for a, b in combinations(df.city.unique(), 2))),
columns=df.columns.tolist()+[c+"_2" for c in df])
city zone1 zone2 city_2 zone1_2 zone2_2
0 Chicago Mid IL St.Louis Mid IL-1
1 Chicago Mid IL Monmouth Mid IL-3
2 Chicago Mid IL DesMoines Mid IL
3 St.Louis Mid IL-1 Monmouth Mid IL-3
4 St.Louis Mid IL-1 DesMoines Mid IL
5 Monmouth Mid IL-3 DesMoines Mid IL
你也可以试试这个的变体:
pairs = ((a, b) for a, b in combinations(df.index, 2))
>>> pd.DataFrame({
'city_1': df.ix[p[0], 'city'],
'city_2': df.ix[p[1], 'city'],
'zone1_1': df.ix[p[0], 'zone1'],
'zone1_2': df.ix[p[1], 'zone1'],
'zone2_1': df.ix[p[0], 'zone2'],
'zone2_2': df.ix[p[1], 'zone2']} for p in pairs)
city_1 city_2 zone1_1 zone1_2 zone2_1 zone2_2
0 Chicago St.Louis Mid Mid IL IL-1
1 Chicago Monmouth Mid Mid IL IL-3
2 Chicago DesMoines Mid Mid IL IL
3 St.Louis Monmouth Mid Mid IL-1 IL-3
4 St.Louis DesMoines Mid Mid IL-1 IL
5 Monmouth DesMoines Mid Mid IL-3 IL