在R中使用ggpubr软件包绘制相关性测试时出错

时间:2019-03-18 11:25:02

标签: r pearson-correlation ggpubr

这是我正在处理的数据集的一个示例,我在变量stepz之间进行了皮尔逊相关性测试:

> head(datacorr)
  Date & Time [Local]  Latitude Longitude     step   x   y         z
1 2018-06-18 15:32:00 -2.436589  34.81398 4410.099  14  10  18.24621
2 2018-06-18 15:36:00 -2.438691  34.81222 4620.307  11  15  18.60108
3 2018-06-18 15:40:00 -2.438472  34.81164 4682.904 112 164 198.84468
4 2018-06-18 15:44:00 -2.437794  34.81141 4702.586  90 278 293.42787
5 2018-06-18 15:48:00 -2.437766  34.81177 4662.585  11   7  13.05272
6 2018-06-18 15:52:00 -2.437416  34.81284 4541.207  16   2  16.17849

我在运行测试和创建基本的plot()方面没有问题,但是我希望使用ggscatter()软件包中的ggpubr进行更详细的可视化。 这是我的脚本及其输出:

> corre<-cor.test(datacorr$step, datacorr$z, method=c("pearson"))
> print(corre)

    Pearson's product-moment correlation

data:  datacorr$step and datacorr$z
t = -6.2382, df = 15021, p-value = 4.546e-10
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.06676964 -0.03487023
sample estimates:
       cor 
-0.0508329 

> plot(datacorr$step,datacorr$z)
> step<-datacorr$step
> activityz<-datacorr$z
> library("ggpubr")
> ggscatter(datacorr, x = step, y = activityz, 
+           add = "reg.line", conf.int = TRUE, 
+           cor.coef = TRUE, cor.method = "pearson",
+           xlab = "Step Length", ylab = "Activity Z")
Error in .check_data(data, x, y, combine = combine | merge != "none") : 
  Can't find the y elements in the data.

我根据另一篇文章使用了ggscatter()代码。有谁知道我为什么总是出错?我是R的新手,但对我来说好像是我在正确定义所有参数。对于如何在R中可视化皮尔逊相关测试(功能线,r系数,p值等),您还有其他选择,我欢迎您提出建议。

感谢您的帮助!

1 个答案:

答案 0 :(得分:1)

函数ggscatter文档中的示例表明,您必须将xy参数作为字符串传递。该文档还声明(作为对您上面评论的回答),您可以使用add.params来设置回归线的样式。

尝试一下:

ggscatter(datacorr, x = 'step', y = 'z', 
          color = 'red',   # for the points
          add = "reg.line", 
          add.params = list(color = "blue", fill = "lightgray"),  # for the line
          conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Step Length", ylab = "Activity Z")

使用的数据:

datacorr <- read.table(text = "Date Time  Latitude Longitude     step   x   y         z
1 2018-06-18 15:32:00 -2.436589  34.81398 4410.099  14  10  18.24621
2 2018-06-18 15:36:00 -2.438691  34.81222 4620.307  11  15  18.60108
3 2018-06-18 15:40:00 -2.438472  34.81164 4682.904 112 164 198.84468
4 2018-06-18 15:44:00 -2.437794  34.81141 4702.586  90 278 293.42787
5 2018-06-18 15:48:00 -2.437766  34.81177 4662.585  11   7  13.05272
6 2018-06-18 15:52:00 -2.437416  34.81284 4541.207  16   2  16.17849
", header = TRUE)