我正在尝试训练一个模型来检查图像,识别指定的对象并告诉我其模型(我什至不需要看到对象周围的正方形)。
为此,我使用Tensorflow的对象检测功能,而我所做的大部分工作都是看本教程:
但是某些事情发生了变化,可能是由于更新,然后我不得不自己做一些事情。我实际上可以训练模型(我想),但是我不理解评估结果。我过去经常看到损耗和电流阶跃,但是这个输出对我来说并不常见。另外,我认为培训没有保存。
model_main.py --logtostderr --train_dir=training/ --pipeline_config_path=training/faster_rcnn_inception_v2_coco.config
model {
faster_rcnn {
num_classes: 9
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024
}
}
feature_extractor {
type: 'faster_rcnn_inception_v2'
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect_ratios: [0.5, 1.0, 2.0]
height_stride: 16
width_stride: 16
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.7
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
use_dropout: false
dropout_keep_probability: 1.0
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.0
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 300
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}
train_config: {
batch_size: 5
optimizer {
momentum_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.0002
schedule {
step: 900000
learning_rate: .00002
}
schedule {
step: 1200000
learning_rate: .000002
}
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "faster_rcnn_inception_v2_coco_2018_01_28/model.ckpt"
from_detection_checkpoint: true
num_steps: 50000
data_augmentation_options {
random_horizontal_flip {
}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "C:/tensorflow1/models/research/object_detection/images/train.record"
}
label_map_path: "C:/tensorflow1/models/research/object_detection/training/object-detection.pbtxt"
}
eval_config: {
num_examples: 67
max_evals: 10
}
eval_input_reader: {
tf_record_input_reader {
input_path: "C:/tensorflow1/models/research/object_detection/images/test.record"
}
label_map_path: "C:/tensorflow1/models/research/object_detection/training/object-detection.pbtxt"
shuffle: false
num_readers: 1
}
2019-03-16 01:05:23.842424: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
2019-03-16 01:05:23.842528: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-03-16 01:05:23.845561: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0
2019-03-16 01:05:23.845777: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N
2019-03-16 01:05:23.847854: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6390 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1)
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=0.05s).
Accumulating evaluation results...
DONE (t=0.04s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.681
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 1.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.670
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.542
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.825
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.682
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.689
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.689
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.556
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.825
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
faster_rcnn_inception_v2_coco_2018_01_28
内的模型自2018年1月以来没有更改,这可能意味着即使进行培训,也无法保存进度。
我的问题是:
答案 0 :(得分:3)
哇,这里有很多问题要回答。
1。我认为您的配置文件正确,通常需要仔细配置的字段为:
num_classes:
您的数据集的类数fine_tune_checkpoint
:如果您采用跨语言学习,则开始进行培训的检查点;如果from_detection_checkpoint
设置为true,则应提供此检查点。label_map_path
:标签文件的路径,类数应等于num_classes
input_path
和train_input_reader
中都eval_input_reader
num_examples
中的eval_config
,这是验证数据集的大小,例如验证数据集中的示例数。num_steps
:这是模型停止训练之前要达到的训练步骤总数。 2是,您的培训过程已保存,保存在train_dir
(如果使用的是较旧版本的api,则保存为model_dir
,如果使用的是最新版本的api),则是官方说明是here。您可以使用tensorbard
来可视化您的培训过程。
3输出为COCO评估格式,因为这是默认的评估指标选项。但是您可以通过在配置文件的metrics_set :
中设置eval_config
来尝试其他评估指标,其他选项可用here。对于可可指标,具体来说:
IoU
是 Union上的交集,它定义了检测边界框与地面真相框的重叠量。 This的答案为您提供了更多详细信息,以帮助您了解如何在不同的IoU上计算精度。maxDets
是 thresholds on max detections per image (有关详细讨论,请参见here)area
,区域分为三类,这取决于区域占用的像素数,小,中和大都定义为here。 4一旦培训总数达到cofig文件中设置的num_steps
,培训就会停止。对于您而言,每15分钟执行一次评估会话。同样,也可以在配置This中配置每次评估的频率。
5尽管您遵循了上面的教程,但是我建议您遵循官方的API文档file。
PS:的确,我可以确认负精度得分是因为缺少相应的类别。请参阅https://github.com/tensorflow/models/tree/master/research/object_detection中的参考。