在Google-colab中,我尝试使用带有SSD_mobilenet_v1_pets.config
的 Tensorflow对象检测API 来检测汽车,它将humans
检测为car
和{{1 }}设为car
。以下是N/A
和size config
:
image dimensions
我有1160张各种尺寸的图像(例如:73 x 63、118 x 62、62 x 56、71 x 56、276 x 183、259 x 184、318 x 159、700 x 420、647 x 407、897 x 554)
请澄清,错误检测汽车的原因是由于图像尺寸还是其他原因?
这是我的配置文件
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
}
}
image_resizer {
fixed_shape_resizer {
height: 300
width: 300
}
这是我的pbtxt代码
model {
ssd {
num_classes: 1
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
}
}
similarity_calculator {
iou_similarity {
}
}
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
}
}
image_resizer {
fixed_shape_resizer {
height: 300
width: 300
}
}
box_predictor {
convolutional_box_predictor {
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.8
kernel_size: 1
box_code_size: 4
apply_sigmoid_to_scores: false
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
}
}
}
}
feature_extractor {
type: 'ssd_mobilenet_v1'
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
}
}
}
loss {
classification_loss {
weighted_sigmoid {
anchorwise_output: true
}
}
localization_loss {
weighted_smooth_l1 {
anchorwise_output: true
}
}
hard_example_miner {
num_hard_examples: 3000
iou_threshold: 0.99
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 0
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
batch_size: 32
optimizer {
rms_prop_optimizer: {
learning_rate: {
exponential_decay_learning_rate {
initial_learning_rate: 0.004
decay_steps: 800720
decay_factor: 0.95
}
}
momentum_optimizer_value: 0.9
decay: 0.9
epsilon: 1.0
}
}
fine_tune_checkpoint: "ssd_mobilenet_v1_coco_11_06_2017/model.ckpt"
from_detection_checkpoint: true
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "object_detection/data/train.record"
}
label_map_path: "object_detection/data/object-detection.pbtxt"
}
eval_config: {
num_examples: 40
}
eval_input_reader: {
tf_record_input_reader {
input_path: "object_detection/data/test.record"
}
label_map_path: "training/object-detection.pbtxt"
shuffle: false
num_readers: 1
}
我还有一个疑问,你们能帮我吗 我试图找出不戴头盔的人。我使用上述相同的模型。 这是我的pbtxt文件
item {
id: 1
name: 'car'
}
请帮助我...
答案 0 :(得分:0)
请发布您的标签地图<?php
/**
* The file is controller. Do not modify the file if you want to upgrade the module in future
*
* @author Globo Jsc <contact@globosoftware.net>
* @copyright 2016 Globo., Jsc
* @link http://www.globosoftware.net
* @license please read license in file license.txt
*/
include_once(_PS_MODULE_DIR_ . 'cardelivery/classes/AdditionalServicesModel.php');
class AdminAdditionalServiceController extends ModuleAdminControllerCore {
public $name;
public function __construct() {
$this->name = 'AdminAdditionalService';
$this->className = 'AdditionalServicesModel';
$this->table = 'additional_service';
$this->meta_title = $this->l('Additional Services');
$this->deleted = false;
$this->explicitSelect = true;
$this->context = Context::getContext();
$this->bootstrap = true;
$this->_defaultOrderBy = 'id_additional_service';
$this->filter = true;
if (Shop::isFeatureActive()) {
Shop::addTableAssociation($this->table, array('type' => 'shop'));
}
$this->position_identifier = 'id_additional_service';
$this->addRowAction('edit');
$this->addRowAction('delete');
$this->fields_list = array(
'id_additional_service' => array(
'title' => $this->l('ID'),
'type' => 'int',
'width' => 'auto',
'orderby' => false),
'service_name' => array(
'title' => $this->l('Icon'),
'width' => 'auto',
'orderby' => false,
),
'service_desc' => array(
'title' => $this->l('service_desc'),
'type' => 'text'
),
'active' => array(
'title' => $this->l('Status'),
'width' => 'auto',
'active' => 'status',
'type' => 'bool',
'orderby' => false),
);
parent::__construct();
}
function initContent() {
parent::initContent();
if (Tools::isSubmit('submit')) {
Tools::redirectAdmin(self::$currentIndex . '&token=' . Tools::getAdminTokenLite('AdminCategories') . '&conf=7');
}
}
public function initPageHeaderToolbar() {
$this->page_header_toolbar_btn['back_to_list'] = array(
'href' => Context::getContext()->link->getAdminLink('AdminGCardeliverycity', true),
'desc' => $this->l('Back to list', null, null, false),
'icon' => 'process-icon-back'
);
parent::initPageHeaderToolbar();
}
public function renderForm() {
$id_citydelivery = (int) Tools::getValue('id_citydelivery');
if ($id_citydelivery == 0) {
$addSerModObj = new AdditionalServicesModel((int) Tools::getValue('id_additional_service'));
$id_citydelivery = $addSerModObj->id_citydelivery;
}
$fields_form_1 = array(
'form' => array(
'legend' => array('title' => $this->l('Additional Service'), 'icon' => 'icon-cogs'),
'input' => array(
array(
'type' => 'hidden',
'name' => 'id_citydelivery'
),
array(
'type' => 'text',
'label' => $this->l('Service_name'),
'name' => 'service_name',
'size' => 255,
'required' => true,
'desc' => $this->l('Enter name of Arrival port')
),
array(
'type' => 'text',
'label' => $this->l('service_desc'),
'name' => 'service_desc',
'size' => 255,
'required' => true,
'desc' => $this->l('Enter name of Arrival port')
),
array(
'type' => 'text',
'label' => $this->l('charge'),
'name' => 'charge',
'size' => 255,
'required' => true,
'desc' => $this->l('Enter name of Arrival port')
),
array(
'type' => 'switch',
'label' => $this->l('Active'),
'name' => 'active',
'required' => false,
'is_bool' => true,
'values' => array(array(
'id' => 'active_on',
'value' => 1,
'label' => $this->l('Active')), array(
'id' => 'active_off',
'value' => 0,
'label' => $this->l('Inactive')))),
),
'submit' => array('title' => $this->l('Save')),
'buttons' => array(
array(
'href' => Context::getContext()->link->getAdminLink('AdminGCardeliverycity', true) . '&updatecitydelivery&id_citydelivery=' . $id_citydelivery,
'title' => $this->l('Cancle'),
'icon' => 'process-icon-cancel'
)
)
)
);
$helper = new HelperForm();
$helper->show_toolbar = false;
$helper->module = $this;
$helper->name_controller = $this->name;
$helper->toolbar_scroll = true;
$lang = new Language((int) Configuration::get('PS_LANG_DEFAULT'));
$helper->default_form_language = $lang->id;
$helper->allow_employee_form_lang = Configuration::get('PS_BO_ALLOW_EMPLOYEE_FORM_LANG') ? Configuration::get('PS_BO_ALLOW_EMPLOYEE_FORM_LANG') : 0;
$this->fields_form = array();
$helper->identifier = $this->identifier;
$helper->submit_action = 'submit';
$helper->currentIndex = AdminController::$currentIndex;
$helper->token = Tools::getAdminTokenLite($this->name);
$id_additional_service = (int) Tools::getValue('id_additional_service');
$additionalServiceObj = new AdditionalServicesModel($id_additional_service);
$helper->tpl_vars = array(
'fields_value' => $this->getFormValues($additionalServiceObj),
'languages' => $this->context->controller->getLanguages(),
'id_language' => $this->context->language->id
);
$_1 = $helper->generateForm(array($fields_form_1));
$return = $_1;
return $return;
}
function getFormValues($additionalServiceObj) {
return array(
'service_name' => Tools::getValue('service_name ', $additionalServiceObj->service_name),
'service_desc' => Tools::getValue('service_desc', $additionalServiceObj->service_desc),
'charge' => Tools::getValue('charge', $additionalServiceObj->charge),
'active' => Tools::getValue('active', $additionalServiceObj->active)
);
}
}
。
我猜第一位只提到了赛车!!
答案 1 :(得分:0)
正如@Janikan指出的那样,问题出在.pbtxt文件上。由于您使用的是默认的ssd_mobilenet模型,因此在MS-COCO数据集上进行了训练,该数据集实际上有90个类别,汽车的ID为3。由于在标签映射中找不到ID 3,因此输出显示为N /一种。默认标签图中的ID 1是person,这就是为什么其将“ car”显示为所有人的分类的原因。
如果您只想显示汽车。替换pbtxt文件并编辑visualisation_tools以仅过滤所需的class_Id。