使用LWJGL3和JOML。
我正在尝试找出如何使用光线投射系统在地形上获取目标的方法。我使用该点设置字符位置,以查看正在输出的点。
我不认为这是我的地形引起的问题,因为移动字符(使用键盘或通过仅在每个帧中添加一个值)并将其附加到地形上效果很好。
我遇到的问题:
如果我打印出地形点矢量,则出于某种原因它会以科学计数法出现:
( 5.335E+1 3.849E-2 -9.564E+1)
( 8.804E+1 -6.256E-3 -2.815E+2)
( 5.335E+1 3.849E-2 -9.564E+1)
( 8.804E+1 -6.256E-3 -2.815E+2)
( 5.335E+1 3.849E-2 -9.564E+1)
如果我分别打印出x,y和z值,则它实际上显示了正确的位置,但同时又轻拂到另一个位置(两者之间的差距鼠标移动的屏幕中心越远):
5.8912144, 0.016174316, -7.771721
6.1992702, 0.01574707, -11.79966
5.8912144, 0.016174316, -7.771721
6.1992702, 0.01574707, -11.79966
6.609352, 0.01815033, -8.793705
射线广播类:
public class Raycast
{
private static final int RECURSION_COUNT = 200;
private static final float RAY_RANGE = 600;
private Input input;
private Vector3f currentRay = new Vector3f();
private Matrix4f projectionMatrix;
private Matrix4f viewMatrix;
private Camera camera;
private Terrain terrain;
private Vector3f currentTerrainPoint;
public Raycast(Camera camera, Matrix4f projectionMatrix, Terrain terrain, Input input) {
this.camera = camera;
this.projectionMatrix = projectionMatrix;
this.input = input;
this.viewMatrix = MathUtils.createViewMatrix(camera);
this.terrain = terrain;
}
public void update()
{
viewMatrix = MathUtils.createViewMatrix(camera);
currentRay = calculateRay();
if (intersectionInRange(0, RAY_RANGE, currentRay)) {
currentTerrainPoint = binarySearch(0, 0, RAY_RANGE, currentRay);
} else {
currentTerrainPoint = null;
}
}
private Vector3f calculateRay()
{
float mouseX = (float) input.getMouseDx();
float mouseY = (float) input.getMouseDy();
Vector2f deviceCoords = getNormalizedDeviceCoordinates(mouseX, mouseY);
//System.out.println(deviceCoords.x+", "+deviceCoords.y);
Vector4f clipCoords = new Vector4f(deviceCoords.x, deviceCoords.y, -1f, 1f);
Vector4f eyeCoords = toEyeCoords(clipCoords);
Vector3f worldRay = toWorldCoords(eyeCoords);
return worldRay;
}
private Vector3f toWorldCoords(Vector4f eyeCoords)
{
Matrix4f invertedView = viewMatrix.invert();
Vector4f rayWorld = invertedView.transform(eyeCoords);
Vector3f mouseRay = new Vector3f(rayWorld.x, rayWorld.y, rayWorld.z);
mouseRay.normalize();
return mouseRay;
}
private Vector4f toEyeCoords(Vector4f clipCoords)
{
Matrix4f invertedProjection = projectionMatrix.invert();
Vector4f eyeCoords = invertedProjection.transform(clipCoords);
return new Vector4f(eyeCoords.x, eyeCoords.y, -1f, 0f);
}
private Vector2f getNormalizedDeviceCoordinates(float mouseX, float mouseY)
{
float x = (2f * mouseX) / Constants.DISPLAY_WIDTH - 1f;
float y = (2f * mouseY) / Constants.DISPLAY_HEIGHT - 1f;
return new Vector2f(x, -y);
}
private Vector3f getPointOnRay(Vector3f ray, float distance) {
//Vector3f camPos = new Vector3f(camera.getPosX(), camera.getPosY(), camera.getPosZ());
Vector3f start = new Vector3f(camera.getPosX(), camera.getPosY(), camera.getPosZ());
Vector3f scaledRay = new Vector3f(ray.x * distance, ray.y * distance, ray.z * distance);
return start.add(scaledRay);
}
private Vector3f binarySearch(int count, float start, float finish, Vector3f ray) {
float half = start + ((finish - start) / 2f);
if (count >= RECURSION_COUNT) {
Vector3f endPoint = getPointOnRay(ray, half);
Terrain terrain = getTerrain(endPoint.x, endPoint.z);
if (terrain != null) {
return endPoint;
} else {
return null;
}
}
if (intersectionInRange(start, half, ray)) {
return binarySearch(count + 1, start, half, ray);
} else {
return binarySearch(count + 1, half, finish, ray);
}
}
private boolean intersectionInRange(float start, float finish, Vector3f ray) {
Vector3f startPoint = getPointOnRay(ray, start);
Vector3f endPoint = getPointOnRay(ray, finish);
if (!isUnderGround(startPoint) && isUnderGround(endPoint)) {
return true;
} else {
return false;
}
}
private boolean isUnderGround(Vector3f testPoint) {
Terrain terrain = getTerrain(testPoint.x, testPoint.z);
float height = 0;
if (terrain != null) {
height = terrain.getTerrainHeight(testPoint.x, testPoint.z);
}
if (testPoint.y < height) {
return true;
} else {
return false;
}
}
private Terrain getTerrain(float worldX, float worldZ) {
return terrain;
}
public Vector3f getCurrentTerrainPoint() {
return currentTerrainPoint;
}
public Vector3f getCurrentRay() {
return currentRay;
}
}
带有视图和投影矩阵的MathUtils类:
public class MathUtils {
public static float baryCentric(Vector3f p1, Vector3f p2, Vector3f p3, Vector2f pos) {
float det = (p2.z - p3.z) * (p1.x - p3.x) + (p3.x - p2.x) * (p1.z - p3.z);
float l1 = ((p2.z - p3.z) * (pos.x - p3.x) + (p3.x - p2.x) * (pos.y - p3.z)) / det;
float l2 = ((p3.z - p1.z) * (pos.x - p3.x) + (p1.x - p3.x) * (pos.y - p3.z)) / det;
float l3 = 1.0f - l1 - l2;
return l1 * p1.y + l2 * p2.y + l3 * p3.y;
}
public static Matrix4f createTransformationMatrix(Vector2f translation, Vector2f scale) {
Matrix4f matrix = new Matrix4f();
matrix.identity();
matrix.translate(translation.x,translation.y,0f);
matrix.scale(scale.x,scale.y,1f);
return matrix;
}
public static Matrix4f createTransformationMatrix(Vector3f translation, float rx, float ry, float rz, float scale) {
Matrix4f transformationMatrix = new Matrix4f();
transformationMatrix.identity();
transformationMatrix.translate(translation);
transformationMatrix.rotate((float) Math.toRadians(rx), 1,0,0);
transformationMatrix.rotate((float) Math.toRadians(ry), 0,1,0);
transformationMatrix.rotate((float) Math.toRadians(rz), 0,0,1);
transformationMatrix.scale(scale);
return transformationMatrix;
}
public static Matrix4f createViewMatrix(Camera camera) {
Matrix4f viewMatrix = new Matrix4f();
viewMatrix.identity();
viewMatrix = viewMatrix.rotate((float) Math.toRadians(camera.getPitch()), 1,0,0);//((float) Math.toRadians(camera.getPitch()), new Vector3f(1, 0, 0), viewMatrix);
viewMatrix = viewMatrix.rotate((float) Math.toRadians(camera.getYaw()),0, 1, 0);
Vector3f cameraPos = new Vector3f(camera.getPosX(), camera.getPosY(), camera.getPosZ());
Vector3f negativeCameraPos = new Vector3f(-cameraPos.x, -cameraPos.y, -cameraPos.z);
viewMatrix = viewMatrix.translate(negativeCameraPos);
return viewMatrix;
}
public static Matrix4f createProjectionMatrix() {
Matrix4f projectionMatrix = new Matrix4f();
float aspectRatio = (float) Constants.DISPLAY_WIDTH / (float) Constants.DISPLAY_HEIGHT;
float fov = Constants.FOV;
float near = Constants.NEAR_PLANE;
float far = Constants.FAR_PLANE;
projectionMatrix = projectionMatrix.perspective((float) java.lang.Math.toRadians(fov), aspectRatio, near, far);
return projectionMatrix;
}
答案 0 :(得分:2)
视图空间中的坐标是一个Cartesian coordinates,其中包含3个分量x
,y
和z
。投影矩阵从视图空间转换为剪辑空间。剪辑空间坐标为Homogeneous coordinates,包含4个分量x
,y
,z
和w
。
可以通过Perspective divide将剪辑空间坐标转换为规范化的设备坐标。
这意味着x
,y
和z
分量除以w
分量。
如果要从规范化的设备空间转换为视图空间,则必须进行逆运算。这意味着您必须按逆投影矩阵进行变换,并将结果的x
,y
和z
分量除以结果的w
分量。
private Vector4f toEyeCoords(Vector4f ndcCoords)
{
Matrix4f invertedProjection = projectionMatrix.invert(new Matrix4f());
Vector4f eyeCoords = invertedProjection.transform(clipCoords);
return new Vector4f(eyeCoords.x/eyeCoords.w, eyeCoords.y/eyeCoords.w, eyeCoords.z/eyeCoords.w, 0.0f);
}