如何查找arrayList中的哪些2D点是共线的

时间:2018-12-25 10:05:36

标签: java arraylist geometry

我有一个存储2D点的arrayList。将这些点连接在一起时,它们代表一条路线。我想找到哪些点在同一条直线上(共线),以便我知道在哪些点上发生转弯/拐角。一个例子是:

ArrayList<Point> positions = new ArrayList<Point>();
positions.add(Point(0,0));
positions.add(Point(0,1));
positions.add(Point(0,2));
positions.add(Point(1,2));
positions.add(Point(2,2));
positions.add(Point(3,3));

示例图片:

enter image description here

我想知道在此示例中,点CDEG是发生“转弯”的地方,而点{{ 1}},A,B,CC,DD,EE,F,G是共线的。

我的想法是首先采样三个点并检查斜率。如果斜率不匹配,我知道第三个点与前两个点不共线。如果是这样,我知道它们是共线的,我会检查更多点,直到斜率不匹配为止。然后,我知道第一行结束,第二行开始以及转弯发生的位置。我重复这个过程。但是我还没有实现该想法的想法。我真的很感谢您的帮助。

编辑:我只有整数坐标,并且两个连续的点的Chebyshev距离始终为1。这要感谢@ Marco13。

2 个答案:

答案 0 :(得分:1)

通过计算列表中每个相邻对的斜率变化
您可以获得发生“转弯”的点。
Java可以通过将斜率计算为“ Infinity ”,
来处理垂直线,因此不必担心。

public static void main(String[] args) {
    ArrayList<Point> positions = new ArrayList<Point>();
    positions.add(new Point(1,0));
    positions.add(new Point(1,1));
    positions.add(new Point(1,2));
    positions.add(new Point(2,2));
    positions.add(new Point(3,1));
    positions.add(new Point(4,1));
    positions.add(new Point(5,1));
    positions.add(new Point(5,2));

    ArrayList<Point> turns = new ArrayList<Point>();
    for (int i = 0; i < positions.size(); i++) {
        turns.add(null);
    }

    int counter = 0;
    if (positions.size() > 2) {
        Point base = positions.get(0);
        Point next = positions.get(1);
        int x = (next.x - base.x);
        double slope = 1.0 * (next.y - base.y) / (next.x - base.x);

        for (int i = 2; i < positions.size(); i++) {
            Point newpoint = positions.get(i);

            double newslope = 1.0 * (newpoint.y - next.y) / (newpoint.x - next.x);
            if (newslope != slope) {
                counter++;
                turns.set(i - 1, positions.get(i - 1));
                slope = newslope;
            }

            next = newpoint;
        }
    }

    System.out.println("Collinear points:");
    for (int i = 0; i < positions.size(); i++) {
        System.out.print("(" + positions.get(i).x + ", " + positions.get(i).y + ") ");
        if (turns.get(i) != null) {
            System.out.println();
            System.out.print("(" + positions.get(i).x + ", " + positions.get(i).y + ") ");
        }
    }

    System.out.println();
    System.out.println();

    if (counter > 0) {
        System.out.println("Turns at these points: ");
        for (Point p : turns) {
            if (p != null)
                System.out.print("(" + p.x + ", " + p.y + ") ");
        }
    } else {
        System.out.println("There are no turns!");
    }
}

将打印:

Collinear points:
(1, 0) (1, 1) (1, 2) 
(1, 2) (2, 2) 
(2, 2) (3, 1) 
(3, 1) (4, 1) (5, 1) 
(5, 1) (5, 2) 

Turns at these points: 
(1, 2) (2, 2) (3, 1) (5, 1) 

答案 1 :(得分:1)

当涉及垂直线时,您应该计算斜率。

根据图像和描述,我假设您只有整数坐标,并且两个连续点的Chebyshev distance始终为1。(如果不是这种情况,则应编辑答案,然后包括更多信息)。

然后,当

时,点(x i ,y i )是转折点
  • x i-1 -x i != x i + 1 -x i
  • y i-1 -y i != y i + 1 -y i

我个人建议计算列表中这些点的 indices ,因为这样做有几个优点:

  • 同一点多次出现,您不会遇到麻烦
  • 有了索引,您可以轻松地在列表中查找点
  • 您可以使用连续的转折点索引来计算共线点的子列表

这是在此处实现的示例:

import java.awt.Point;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;

public class TurningPoints
{
    public static void main(String[] args)
    {
        List<Point> points = new ArrayList<Point>();
        points.add(createPoint("A", 1, 0));
        points.add(createPoint("B", 1, 1));
        points.add(createPoint("C", 1, 2));
        points.add(createPoint("D", 2, 2));
        points.add(createPoint("E", 3, 1));
        points.add(createPoint("F", 4, 1));
        points.add(createPoint("G", 5, 1));
        points.add(createPoint("H", 5, 2));

        List<Integer> indices = computeTurningPointIndices(points);
        System.out.println("Turning points are at " + indices);

        List<Point> turningPoints = indices.stream().map(i -> points.get(i))
            .collect(Collectors.toList());
        System.out.println("They are " + turningPoints);

        System.out.println("Collinear:");
        indices.add(0, 0);
        indices.add(points.size() - 1);
        for (int i = 0; i < indices.size() - 1; i++)
        {
            int i0 = indices.get(i);
            int i1 = indices.get(i + 1);
            List<Point> collinear = points.subList(i0, i1 + 1);

            System.out.println("    " + collinear);
        }
    }

    private static List<Integer> computeTurningPointIndices(List<Point> points)
    {
        List<Integer> indices = new ArrayList<Integer>();
        for (int i = 1; i < points.size() - 1; i++)
        {
            Point prev = points.get(i - 1);
            Point curr = points.get(i);
            Point next = points.get(i + 1);
            int dxPrev = prev.x - curr.x;
            int dyPrev = prev.y - curr.y;
            int dxNext = next.x - curr.x;
            int dyNext = next.y - curr.y;
            if (dxPrev != dxNext && dyPrev != dyNext)
            {
                indices.add(i);
            }
        }
        return indices;
    }

    private static Point createPoint(String name, int x, int y)
    {
        // Only for this example. You should usually not do this!
        return new Point(x, y)
        {
            @Override
            public String toString()
            {
                return name + "(" + x + "," + y + ")";
            }
        };
    }

}

输出为

Turning points are at [2, 3, 4, 6]
They are [C(1,2), D(2,2), E(3,1), G(5,1)]
Collinear:
    [A(1,0), B(1,1), C(1,2)]
    [C(1,2), D(2,2)]
    [D(2,2), E(3,1)]
    [E(3,1), F(4,1), G(5,1)]
    [G(5,1), H(5,2)]