如何将Numpy数组转换为Panda DataFrame

时间:2018-12-17 13:14:51

标签: python pandas numpy type-conversion numpy-ndarray

我有一个Numpy数组,看起来像这样:

[400.31865662]
[401.18514808]
[404.84015554]
[405.14682194]
[405.67735105]
[273.90969447]
[274.0894528]

当我尝试使用以下代码将其转换为Panda Dataframe时

y = pd.DataFrame(data)
print(y)

打印时得到以下输出。为什么我会得到所有这些zéros?

            0
0  400.318657
            0
0  401.185148
            0
0  404.840156
            0
0  405.146822
            0
0  405.677351
            0
0  273.909694
            0
0  274.089453

我想要一个看起来像这样的单列数据框:

400.31865662
401.18514808
404.84015554
405.14682194
405.67735105
273.90969447
274.0894528

4 个答案:

答案 0 :(得分:12)

由于我认为这篇文章的许多访问者不在这里,以解决OP的特定且不可复制的问题,因此这是一个普遍的答案

df = pd.DataFrame(array)

pandas的优点是对眼睛(例如Excel)很有帮助,因此使用列名很重要。

import numpy as np
import pandas as pd

array = np.random.rand(5, 5)
array([[0.723, 0.177, 0.659, 0.573, 0.476],
       [0.77 , 0.311, 0.533, 0.415, 0.552],
       [0.349, 0.768, 0.859, 0.273, 0.425],
       [0.367, 0.601, 0.875, 0.109, 0.398],
       [0.452, 0.836, 0.31 , 0.727, 0.303]])
columns = [f'col_{num}' for num in range(5)]
index = [f'index_{num}' for num in range(5)]

神奇的地方在这里:

df = pd.DataFrame(array, columns=columns, index=index)
            col_0     col_1     col_2     col_3     col_4
index_0  0.722791  0.177427  0.659204  0.572826  0.476485
index_1  0.770118  0.311444  0.532899  0.415371  0.551828
index_2  0.348923  0.768362  0.858841  0.273221  0.424684
index_3  0.366940  0.600784  0.875214  0.108818  0.397671
index_4  0.451682  0.836315  0.310480  0.727409  0.302597

答案 1 :(得分:6)

您可以flatten numpy数组:

import numpy as np
import pandas as pd

data = [[400.31865662],
        [401.18514808],
        [404.84015554],
        [405.14682194],
        [405.67735105],
        [273.90969447],
        [274.0894528]]

arr = np.array(data)

df = pd.DataFrame(data=arr.flatten())

print(df)

输出

            0
0  400.318657
1  401.185148
2  404.840156
3  405.146822
4  405.677351
5  273.909694
6  274.089453

答案 2 :(得分:0)

我刚发现我的错误。 (数据)是一个数组列表:

[array([400.0290173]), array([400.02253235]), array([404.00252113]), array([403.99466754]), array([403.98681395]), array([271.97896036]), array([271.97110677])]

所以我用np.vstack(data)来连接它

conc = np.vstack(data)

[[400.0290173 ]
 [400.02253235]
 [404.00252113]
 [403.99466754]
 [403.98681395]
 [271.97896036]
 [271.97110677]]

然后我使用

将连接的数组转换为Pandas Dataframe。
newdf = pd.DataFrame(conc)


    0
0  400.029017
1  400.022532
2  404.002521
3  403.994668
4  403.986814
5  271.978960
6  271.971107

等等!

答案 3 :(得分:0)

还有另一种方法,其他答案未提及。如果您有一个NumPy数组,其本质上是行向量(或列向量),即(n, )之类的形状,则可以执行以下操作:

# sample array
x = np.zeros((20))
# empty dataframe
df = pd.DataFrame()
# add the array to df as a column
df['column_name'] = x

这样,您可以将多个数组添加为单独的列。