我正在用C ++编写一些代码,使用分离轴定理来测试碰撞,并且在某些方向上错误地触发了碰撞的发生
我正在关注this教程,但是该教程仅适用于2D,尽管我认为它应该仍然相同,但我正在尝试以3D实施它。
我现在拥有的算法不会遗漏任何碰撞,但是对于两个盒子的某些方向,它认为实际上没有碰撞时会发生碰撞。可以看到一个例子,根据下面的代码,这两个盒子明显冲突。
代码是用C ++编写的
BoxCollider.h
class BoxCollider :
public Collider
{
public:
BoxCollider(Vector3 position, Vector3 rotation, Vector3 size);
~BoxCollider();
void Update();
public:
Vector3 rotation;
Vector3 size;
Matrix transformMatrix;
std::vector<Vector3> points;
Vector3 normals[3];
};
BoxCollider.cpp
BoxCollider::BoxCollider(Vector3 position, Vector3 rotation, Vector3 size) : rotation(rotation), size(size)
{
this->position = position;
points.resize(8);
}
BoxCollider::~BoxCollider()
{
}
void BoxCollider::Update()
{
Transform* eTransform = m_entity->GetComponent<Transform>();
transformMatrix.RotateYawPitchRoll(rotation + eTransform->rotation);
Vector3 ePos = eTransform->position;
points[0] = transformMatrix * (Vector3( 0.5, -0.5, -0.5) * size) + position + ePos;
points[1] = transformMatrix * (Vector3( 0.5, 0.5, -0.5) * size) + position + ePos;
points[2] = transformMatrix * (Vector3( 0.5, -0.5, 0.5) * size) + position + ePos;
points[3] = transformMatrix * (Vector3( 0.5, 0.5, 0.5) * size) + position + ePos;
points[4] = transformMatrix * (Vector3(-0.5, -0.5, -0.5) * size) + position + ePos;
points[5] = transformMatrix * (Vector3(-0.5, 0.5, -0.5) * size) + position + ePos;
points[6] = transformMatrix * (Vector3(-0.5, -0.5, 0.5) * size) + position + ePos;
points[7] = transformMatrix * (Vector3(-0.5, 0.5, 0.5) * size) + position + ePos;
normals[0] = transformMatrix * Vector3(1, 0, 0);
normals[1] = transformMatrix * Vector3(0, 1, 0);
normals[2] = transformMatrix * Vector3(0, 0, 1);
}
算法:
void EntityManager::CheckCollision(BoxCollider * col0, BoxCollider * col1)
{
for (int i = 0; i < 3; i++) //First cube
{
Vector3 axis = col0->normals[i];
axis = Vector3(axis.z, -axis.x, axis.y);
Projection proj1 = GetProjection(col0->points, axis);
Projection proj2 = GetProjection(col1->points, axis);
float overlap = GetOverlap(proj1, proj2);
if (overlap > 0.0) //The projections do not overlap
return;
}
for (int i = 0; i < 3; i++) //First cube
{
Vector3 axis = col1->normals[i];
axis = Vector3(axis.z, -axis.x, axis.y);
Projection proj1 = GetProjection(col0->points, axis);
Projection proj2 = GetProjection(col1->points, axis);
float overlap = GetOverlap(proj1, proj2);
if (overlap > 0.0) //The projections do not overlap
return;
}
}
float GetOverlap(Projection proj1, Projection proj2)
{
float a = proj2.left - proj1.right;
float b = proj1.left - proj2.right;
return a > b ? a : b;
}
Projection GetProjection(std::vector<Vector3> points, Vector3 axis)
{
float tmp = 0;
float left = D3D10_FLOAT32_MAX, right = -D3D10_FLOAT32_MAX;
for (int i = 0; i < points.size(); i++)
{
tmp = DotProduct(points[i], axis.Normalize());
if (tmp < left)
{
left = tmp;
}
if (tmp > right)
{
right = tmp;
}
}
return Projection(left, right, axis);
}
答案 0 :(得分:3)
教程仅在2D中,我试图在3D中实现它,尽管我认为它应该仍然相同
不幸的是,事实并非如此。 3D情况更加复杂。要检查两个复杂的形状是否在3D中发生碰撞,您需要检查每个面的法线(执行此操作)以及与每个对象的边缘垂直的方向(您会错过这些方向)。>
因此,对于具有边方向A0,A1,A2和B0,B1,B2的框(A和B),我们有:
所以您只需要添加缺少的9张支票。
进一步的注意:您不需要混淆法线。我的意思是不需要此行:
axis = Vector3(axis.z, -axis.x, axis.y);
在这种情况下,它没有任何危害。但是对于更复杂的形状,实际上可能会使测试不正确。