我有一个(50,0)
大小的numpy系列
array([1.01255569e+00, 1.04166667e+00, 1.07158165e+00, 1.10229277e+00,
1.13430127e+00, 1.16387337e+00, 1.20365912e+00, 1.24007937e+00,
1.27877238e+00, 1.31856540e+00, 1.35281385e+00, 1.40291807e+00,
1.45180023e+00, 1.49700599e+00, 1.55183116e+00, 1.60051216e+00,
1.66002656e+00, 1.73370319e+00, 1.80115274e+00, 1.87687688e+00,
1.95312500e+00, 2.04750205e+00, 2.14961307e+00, 2.23613596e+00,
2.34082397e+00, 2.48015873e+00, 2.61780105e+00, 2.75027503e+00,
2.91715286e+00, 3.07881773e+00, 3.31564987e+00, 3.57142857e+00,
3.81679389e+00, 4.17362270e+00, 4.51263538e+00, 4.95049505e+00,
5.59284116e+00, 6.17283951e+00, 7.02247191e+00, 8.03858521e+00,
9.72762646e+00, 1.17370892e+01, 1.47928994e+01, 2.10084034e+01,
3.12500000e+01, 4.90196078e+01, 9.25925926e+01, 2.08333333e+02,
5.00000000e+02, 1.25000000e+03])
我也有一个长度为50
的熊猫数据框。
x
0 9.999740e-01
1 9.981870e-01
2 9.804506e-01
3 9.187764e-01
4 8.031568e-01
5 6.544660e-01
6 5.032716e-01
7 3.707446e-01
8 2.650768e-01
9 1.857835e-01
10 1.285488e-01
11 8.824506e-02
12 6.030141e-02
13 4.111080e-02
14 2.800453e-02
15 1.907999e-02
16 1.301045e-02
17 8.882996e-03
18 6.074386e-03
19 4.161024e-03
20 2.855636e-03
21 1.963543e-03
22 1.352791e-03
23 9.338596e-04
24 6.459459e-04
25 4.476854e-04
26 3.108912e-04
27 2.163201e-04
28 1.508106e-04
29 1.053430e-04
30 7.372442e-05
31 5.169401e-05
32 3.631486e-05
33 2.555852e-05
34 1.802129e-05
35 1.272995e-05
36 9.008454e-06
37 6.386289e-06
38 4.535381e-06
39 3.226546e-06
40 2.299394e-06
41 1.641469e-06
42 1.173785e-06
43 8.407618e-07
44 6.032249e-07
45 4.335110e-07
46 3.120531e-07
47 2.249870e-07
48 1.624726e-07
49 1.175140e-07
我想将每个numpy细胞与pandas细胞相乘。
1.01255569e+00*9.999740e-01
1.04166667e+00*9.981870e-01
相同大小的numpy数组。
答案 0 :(得分:4)
您可以仅在熊猫数据框中使用.values
系列的'x'
属性:
df['x'].values * arr
其中df
是您的数据帧,arr
是您的数组。
以上表达式将结果返回为Numpy array
。如果您想使用熊猫DataFrame
,则可以省略.values
的使用:
df['x'] * arr
答案 1 :(得分:0)
或将np.multiply
乘以n
与p['x'].values
:
print(np.multiply(n,p['x'].values))
或pd.Series.multiply
:
print(np.array(p['x'].multiply(n)))
或pd.Series.mul
:
print(np.array(p['x'].mul(n)))