我的模特是
Using TensorFlow backend.
Found 8704 images belonging to 68 classes.
Found 2176 images belonging to 68 classes.
Found 1360 images belonging to 68 classes.
_________________________________________________________________
None
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
vgg16 (Model) (None, 4, 4, 512) 14714688
_________________________________________________________________
flatten_1 (Flatten) (None, 8192) 0
_________________________________________________________________
dense_1 (Dense) (None, 256) 2097408
_________________________________________________________________
dropout_1 (Dropout) (None, 256) 0
_________________________________________________________________
dense_2 (Dense) (None, 68) 17476
=================================================================
Total params: 16,829,572
Trainable params: 3,850,372
Non-trainable params: 12,979,200
_________________________________________________________________
每个图像为128 * 128 * 3。我的笔记本电脑上有8个CPU,CPU使用率约为700%。为什么要花一个小时约1个小时?如何提高性能?谢谢
更新
下面是我的模型的详细信息:
vgg16 = VGG16(include_top=False,
weights='imagenet',
input_tensor=None,
input_shape=(IMG_SIZE, IMG_SIZE, CHANNELS),
pooling=None,
classes=68)
for layer in vgg16.layers[-8:-1]:
layer.trainable = False
model = Sequential()
model.add(vgg16)
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(68, activation='softmax'))
print(model.summary())