我首先将3通道图像用作没有问题的VGG16模型的输入:
input_images = Input(shape=(img_width, img_height, 3), name='image_input')
vgg_out = base_model(input_images) # Here base_model is a VGG16
现在,我想改用1通道图像。所以我这样做是这样的:
input_images = Input(shape=(img_width, img_height, 1), name='image_input')
repeat_2 = concatenate([input_images, input_images])
repeat_3 = concatenate([repeat_2, input_images])
vgg_out = base_model(repeat_3)
但是我收到一条错误消息:
File "test.py", line 423, in <module>
model = Model(inputs=[input_images], outputs=[vgg_out])
File "C:\Users\wzhou\AppData\Local\Continuum\Anaconda2\envs\tensorflow\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "C:\Users\wzhou\AppData\Local\Continuum\Anaconda2\envs\tensorflow\lib\site-packages\keras\engine\network.py", line 93, in __init__
self._init_graph_network(*args, **kwargs)
File "C:\Users\wzhou\AppData\Local\Continuum\Anaconda2\envs\tensorflow\lib\site-packages\keras\engine\network.py", line 237, in _init_graph_network
self.inputs, self.outputs)
File "C:\Users\wzhou\AppData\Local\Continuum\Anaconda2\envs\tensorflow\lib\site-packages\keras\engine\network.py", line 1430, in _map_graph_network
str(layers_with_complete_input))
ValueError: Graph disconnected: cannot obtain value for tensor Tensor("input_1:0", shape=(?, 64, 64, 3), dtype=float32) at layer "input_1". The following previous layers were accessed without issue: []
在Keras中将1通道图像转换为3通道图像的正确方法是什么?
答案 0 :(得分:1)
不确定为什么无法以自己的方式定义模型,但是以下方法可以工作。它还可以解决您在原始定义中所犯的错误,即,您必须以正确的方式对输入灰度图像进行归一化,以匹配在预训练的VGG网络中使用的原始图像预处理。否则,加载预训练的重量是没有意义的。
from keras.applications.vgg16 import VGG16
from keras.layers import *
from keras import backend as K
from keras.models import Model
import numpy as np
class Gray2VGGInput( Layer ) :
"""Custom conversion layer
"""
def build( self, x ) :
self.image_mean = K.variable(value=np.array([103.939, 116.779, 123.68]).reshape([1,1,1,3]).astype('float32'),
dtype='float32',
name='imageNet_mean' )
self.built = True
return
def call( self, x ) :
rgb_x = K.concatenate( [x,x,x], axis=-1 )
norm_x = rgb_x - self.image_mean
return norm_x
def compute_output_shape( self, input_shape ) :
return input_shape[:3] + (3,)
# 1. load pretrain
backbone = VGG16(input_shape=(224,224,3) )
# 2. define gray input
gray_image = Input( shape=(224,224,1), name='gray_input' )
# 3. convert to VGG input
vgg_input_image = Gray2VGGInput( name='gray_to_rgb_norm')( gray_image )
# 4. process by pretrained VGG
pred = backbone( vgg_input_image )
# 5. define the model end-to-end
model = Model( input=gray_image, output=pred, name='my_gray_vgg' )
print model.summary()
# 6. test model
a = np.random.randint(0,255,size=(2,224,224,1))
p = model.predict(a)
print p.shape
根据您使用的预先训练的模型,预处理步骤可能会有所不同(有关更多详细信息,请参见this)。
答案 1 :(得分:0)
我遇到了类似的解决方案on Kaggle,但它利用了现有的Keras图层类:
from keras.applications.vgg16 import VGG16
from keras.layers import *
img_size_target = 224
img_input = Input(shape=(img_size_target, img_size_target, 1))
img_conc = Concatenate()([img_input, img_input, img_input])
model = VGG16(input_tensor=img_conc)
前几层看起来像这样:
Model: "vgg16" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_20 (InputLayer) [(None, 224, 224, 1) 0 __________________________________________________________________________________________________ concatenate_1 (Concatenate) (None, 224, 224, 3) 0 input_20[0][0] input_20[0][0] input_20[0][0] __________________________________________________________________________________________________ block1_conv1 (Conv2D) (None, 224, 224, 64) 1792 concatenate_1[0][0]