对数组执行双积分

时间:2018-11-15 12:49:59

标签: python numpy scipy integral

我正在对herehere所述的数组上进行一维积分。如这些答案所述,我不能使用scipy.integrate.quad对数组中的积分进行矢量化处理,因为它采用了自适应算法,这就是为什么我在下面使用numpy.trapz(我可以也使用过scipy.integrate.simpsscipy.integrate.romb

import numpy as np

# Define some random data
Ndata = 500
data1 = np.random.uniform(.1, .8, Ndata)
data2 = np.random.uniform(.01, .2, Ndata)

# 1D function to integrate
def distFunc(x, c1=1., c2=.1):
    B1 = ((data1 - (1. / x)) / data2)**2
    B2 = ((x - c1) / c2)**2
    f = np.exp(-.5 * B1) * np.exp(-.5 * B2) / c2
    return f

# Values in x to evaluate the integral.
x = np.linspace(.1, 10, 100).reshape(-1, 1)

# Integral in x for each of the Ndata values defined above.
int_exp = np.trapz(distFunc(x), x, axis=0)

这对于一个维度来说效果很好,但是现在我想执行一个双积分,用一个变量替换c2常量:

# 2D function to integrate
def distFunc(x, y, c1=1.):
    B1 = ((data1 - (1. / x)) / data2)**2
    B2 = ((x - c1) / y)**2
    f = np.exp(-.5 * B1) * np.exp(-.5 * B2) / y
    return f

对于我可以收集的内容,唯一可用的函数是scipy.integrate.dblquad bu,这意味着我不能再一次将积分应用于整个数组,而不得不使用for循环,速度要慢得多。

对此有什么解决办法吗?只要性能合理(只要将此双积分插入到MCMC中,它就需要进行数百万次评估),我几乎可以接受任何东西。


添加

这是我在scipy.integrate.quad循环内使用for进行一维积分的尝试(即:一次在数组中获得一个数据值)。与在整个阵列上使用np.trapz相比,此过程要慢50倍以上。

import numpy as np
from scipy.integrate import quad

# Define some random data
Ndata = 500
data1 = np.random.uniform(.1, .8, Ndata)
data2 = np.random.uniform(.01, .2, Ndata)

# Function to integrate
def distFunc2(x, data1_i, data2_i, c1=1., c2=.1):
    B1 = ((data1_i - (1. / x)) / data2_i)**2
    B2 = ((x - c1) / c2)**2
    f = np.exp(-.5 * B1) * np.exp(-.5 * B2) / c2
    return f

s = t.time()
int_exp = np.zeros(Ndata)
for i in range(Ndata):
    int_exp[i] = quad(distFunc2, .1, 10., args=(data1[i], data2[i]))[0]
print(t.time() - s)

ADD 2

测试以下给出的答案,可以完成一些工作,但要注意的是,有时dblquad可能失败非常困难(这要慢得多,但要精确得多)。我猜这与np.trapz使用的算法有关。

# Define some random data
Ndata = 10
data1 = np.random.uniform(.1, 10., Ndata)
data2 = np.random.uniform(.1, .2, Ndata)

c1 = .1
print(integ_dblquad(c1, data1, data2))
print(integ_trapz(c1, data1, data2))

def integ_dblquad(c1, data1, data2):
    def distFunc(y, x, d1_i, d2_i, c1):
        B1 = ((d1_i - (1. / x)) / d2_i)**2
        B2 = ((x - c1) / y)**2
        return (np.exp(-.5 * B1) / d2_i) * np.exp(-.5 * B2) / y

    int_exp = np.zeros(data1.size)
    for i in range(data1.size):
        int_exp[i] = dblquad(
            distFunc, .1, 10., lambda x: 0, lambda x: 5.,
            args=(data1[i], data2[i], c1))[0]

    return np.sum(np.log(int_exp))

def integ_trapz(c1, data1, data2):
    def distFunc2d(x, y):
        B1 = ((data1 - (1. / x)) / data2)**2
        B2 = ((x - c1) / y)**2
        return (np.exp(-.5 * B1) / data2) * np.exp(-.5 * B2) / y

    # Values in x to evaluate the integral.
    x = np.linspace(.1, 10, 1000)
    y = np.linspace(.1, 5., 1000)
    # Integral in x for each of the Ndata values defined above.
    int_exp2d = np.trapz(np.trapz(distFunc2d(x[:, np.newaxis], y[:, np.newaxis, np.newaxis]), y, axis=0), x, axis=0)

    return np.sum(np.log(int_exp2d))

1 个答案:

答案 0 :(得分:1)

如果我正确理解了您的问题,则只需拨打两次trapz

import numpy as np

# Define some random data
Ndata = 500
data1 = np.random.uniform(.1, .8, Ndata)
data2 = np.random.uniform(.01, .2, Ndata)

# 1D function to integrate
def distFunc(x, c1=1., c2=.1):
    B1 = ((data1 - (1. / x)) / data2)**2
    B2 = ((x - c1) / c2)**2
    f = np.exp(-.5 * B1) * np.exp(-.5 * B2) / c2
    return f

def distFunc2d(x, y, c1=1.):
    B1 = ((data1 - (1. / x)) / data2)**2
    B2 = ((x - c1) / y)**2
    f = np.exp(-.5 * B1) * np.exp(-.5 * B2) / y
    return f

# Values in x to evaluate the integral.
x = np.linspace(.1, 10, 100)
y = np.linspace(.1, 10, 100)

# Integral in x for each of the Ndata values defined above.
int_exp = np.trapz(distFunc(x[:,np.newaxis]), x, axis=0)
int_exp2d = np.trapz(np.trapz(distFunc2d(x[:,np.newaxis],y[:,np.newaxis,np.newaxis]), y, axis=0), x, axis=0)