在python中绘制牛顿方法的图形

时间:2018-11-04 20:50:33

标签: python newtons-method

在以下代码中,我已经在Python中实现了Newtons方法。

import math
def Newton(f, dfdx, x, eps):
    f_value = f(x)
    iteration_counter = 0
    while abs(f_value) > eps and iteration_counter < 100:
        try:
            x = x - float(f_value)/dfdx(x)
        except ZeroDivisionError:
            print ("Error! - derivative zero for x = ", x)
            sys.exit(1)     # Abort with error
        f_value = f(x)
        iteration_counter += 1

    # Here, either a solution is found, or too many iterations
    if abs(f_value) > eps:
        iteration_counter = -1
    return x, iteration_counter
def f(x):
    return (math.cos(x)-math.sin(x))
def dfdx(x):
    return (-math.sin(x)-math.cos(x))
solution, no_iterations = Newton(f, dfdx, x=1, eps=1.0e-14)
if no_iterations > 0:    # Solution found
    print ("Number of function calls: %d" % (1 + 2*no_iterations))
    print ("A solution is: %f" % (solution))
else:
    print ("Solution not found!")

但是,现在我希望在同一时间间隔上绘制收敛图。这将是绝对误差与迭代次数的函数。

我试图使每次迭代产生一个带有绝对误差和迭代的2元组。这是下面的代码,其中也包含我从中得到的错误,

import math
def Newton(f, dfdx, x, eps):
    f_value = f(x)
    iteration_counter = 0
    while abs(f_value) > eps and iteration_counter < 100:
        try:
            x = x - float(f_value)/dfdx(x)
            yield interation_counter, abs(f(x))
        except ZeroDivisionError:
            print ("Error! - derivative zero for x = ", x)
            sys.exit(1)     # Abort with error
        f_value = f(x)
        iteration_counter += 1

    # Here, either a solution is found, or too many iterations
    if abs(f_value) > eps:
        iteration_counter = -1
def f(x):
    (math.cos(x)-math.sin(x))
def dfdx(x):
    (-math.sin(x)-math.cos(x))

为此,我尝试将结果放入数组中,以便可以绘制结果图

import numpy as np
np.array(list(Newton(f,dfdx, 1,10e-4)))

但是我遇到以下错误:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-20-9378f4e2dbe3> in <module>()
      1 import numpy as np
----> 2 np.array(list(Newton(f,dfdx, 1,10e-4)))

<ipython-input-19-40b67c2c3121> in Newton(f, dfdx, x, eps)
      4     f_value = f(x)
      5     iteration_counter = 0
----> 6     while abs(f_value) > eps and iteration_counter < 100:
      7         try:
      8             x = x - float(f_value)/dfdx(x)

TypeError: bad operand type for abs(): 'NoneType'

1 个答案:

答案 0 :(得分:3)

我建议将每个迭代的每个值x和对应的输出f存储在两个各自的数组中,然后返回每个数组。如果您的函数是正确的(您应该知道它是否收敛),那么这应该很容易做到。从那里,只需绘制阵列。

几个月前,我做到了。您可以在这里查看我的工作方式: How to tell if Newtons-Method Fails

因此,这里需要注意几件事。

1)我没有检查以确保您的函数正确收敛。

2)牛顿法通常具有非常大的步长,并且您通常无法获得其收敛的漂亮可视化效果。迭代次数少于10次的情况并不少见,而且它们通常也不遵循通向收敛点的平滑路径(再次,步长较大)。注意,对于我实现的代码,只有3次迭代。但这可能只是因为您的功能有误。坦白说,我不确定

import numpy as np
import math
import matplotlib.pyplot as plt

def Newton(f, dfdx, x, eps):
    xstore=[]
    fstore=[]
    f_value = f(x)
    iteration_counter = 0
    while abs(f_value) > eps and iteration_counter < 100:
        try:
            x = x - float(f_value)/dfdx(x)
        except ZeroDivisionError:
            print ("Error! - derivative zero for x = ", x)
            sys.exit(1)     # Abort with error
        f_value = f(x)
        xstore.append(x)
        fstore.append(f_value)
        iteration_counter += 1

    # Here, either a solution is found, or too many iterations
    if abs(f_value) > eps:
        iteration_counter = -1

    return x, iteration_counter,xstore,fstore

def f(x):
    return (math.cos(x)-math.sin(x))
def dfdx(x):
    return (-math.sin(x)-math.cos(x))

solution, no_iterations,xvalues,fvalues = Newton(f, dfdx, x=1, eps=1.0e-14)

if no_iterations > 0:    # Solution found
    print ("Number of function calls: %d" % (1 + 2*no_iterations))
    print ("A solution is: %f" % (solution))
else:
    print ("Solution not found!")

x = np.array([i for i in xvalues])
f = np.array(fvalues)
fig = plt.figure()
plt.scatter(x,f,label='Newton')
plt.legend()

enter image description here