kV=[80 90 100 80 90 100 80 90 100]';
Filter={'Al','Al','Al','Cu','Cu','Cu','Ti','Ti','Ti'}';
CNR=[10 9 8 10.1 8.9 7.9 7 6 5]';
T=table(kV,Filter,CNR);
kV Filter CNR
___ ______ ___
80 'Al' 10
90 'Al' 9
100 'Al' 8
80 'Cu' 10.1
90 'Cu' 8.9
100 'Cu' 7.9
80 'Ti' 7
90 'Ti' 6
100 'Ti' 5
输出
Linear mixed-effects model fit by ML
Model information:
Number of observations 9
Fixed effects coefficients 4
Random effects coefficients 0
Covariance parameters 1
Formula:
CNR ~ 1 + kV + Filter
Model fit statistics:
AIC BIC LogLikelihood Deviance
-19.442 -18.456 14.721 -29.442
Fixed effects coefficients (95% CIs):
Name Estimate SE pValue
'(Intercept)' 18.3 0.17533 1.5308e-09
'kV' -0.10333 0.0019245 4.2372e-08
'Filter_Cu' -0.033333 0.03849 -0.86603
'Filter_Ti' -3 0.03849 -77.942
Random effects covariance parameters (95% CIs):
Group: Error
Name Estimate Lower Upper
'Res Std' 0.04714 0.0297 0.074821
当前实施中的问题/问题:
如何解释P = 1.53E-9的'(Intercept)'的固定效果系数?
我只包括固定效果。 ROI测量值的标准偏差是否也应以某种方式纳入随机效应中?
对于给定的kV /滤波器组合,如何合并三个连续切片的CNR的三个独立测量值?我是否应该在表“ T”中添加更多行?这将导致总共27次观察。