我想通过向输入向量添加几个不同的后缀来修改输入。例如,如果(单个)输入为[1, 5, 9, 3]
,我想创建三个向量(存储为矩阵),如下所示:
[[1, 5, 9, 3, 1, 0, 0],
[1, 5, 9, 3, 0, 1, 0],
[1, 5, 9, 3, 0, 0, 1]]
当然,这只是一个观察结果,因此在这种情况下,模型的输入为(None, 4)
。简单的方法是在其他地方(最有可能是numpy)准备输入数据,并相应地调整输入的形状。我可以做到,但我更喜欢在TensorFlow / Keras内部进行。
我已将问题隔离到以下代码中:
import keras.backend as K
from keras import Input, Model
from keras.layers import Lambda
def build_model(dim_input: int, dim_eye: int):
input = Input((dim_input,))
concat = Lambda(lambda x: concat_eye(x, dim_input, dim_eye))(input)
return Model(inputs=[input], outputs=[concat])
def concat_eye(x, dim_input, dim_eye):
x = K.reshape(x, (-1, 1, dim_input))
x = K.repeat_elements(x, dim_eye, axis=1)
eye = K.expand_dims(K.eye(dim_eye), axis=0)
eye = K.tile(eye, (-1, 1, 1))
out = K.concatenate([x, eye], axis=2)
return out
def main():
import numpy as np
n = 100
dim_input = 20
dim_eye = 3
model = build_model(dim_input, dim_eye)
model.compile(optimizer='sgd', loss='mean_squared_error')
x_train = np.zeros((n, dim_input))
y_train = np.zeros((n, dim_eye, dim_eye + dim_input))
model.fit(x_train, y_train)
if __name__ == '__main__':
main()
问题似乎出在-1
函数的shape
自变量tile
中。我尝试将其替换为1
和None
。每个都有自己的错误:
-1
:model.fit
tensorflow.python.framework.errors_impl.InvalidArgumentError: Expected multiples[0] >= 0, but got -1
1
:错误model.fit
tensorflow.python.framework.errors_impl.InvalidArgumentError: ConcatOp : Dimensions of inputs should match: shape[0] = [32,3,20] vs. shape[1] = [1,3,3]
None
:在build_model
期间出错:
Failed to convert object of type <class 'tuple'> to Tensor. Contents: (None, 1, 1). Consider casting elements to a supported type.
答案 0 :(得分:1)
您需要使用K.shape()
来获得输入张量的符号形状,因为批量大小为None
并因此传递K.int_shape(x)[0]
或{{1 }}或None
作为-1
第二个参数的一部分不起作用:
K.tile()