问题陈述是- “您得到了一组N点,其中N为偶数,N <=1000。您必须找到点对的数量,这样,如果您通过该对画一条线,则该线的每一侧将包含相等的点。点数(N / 2-1)。” 我不知道如何在O(n ^ 2)或更短的时间内解决这个问题? 这是我的暴力解决方案-
class Point{
public:
int x, y;
Point(){x = y = 0;}
void make_point(int X, int Y){ x = X; y = Y; }
int Point:: orientation (Point &p0, Point &p1){
Point p2 = *this;
Point a = p1 - p0;
Point b = p2 - p0;
int area = (a.x * b.y) - (b.x * a.y);
if (area > 0)return 1;
if (area < 0)return -1;
return 0;
}
};
int main() {
Point p[4];
p[0].make_point(0, 0);
p[1].make_point(0, 1);
p[2].make_point(1, 1);
p[3].make_point(1, 0);
int sz = sizeof(p) / sizeof(p[0]);
int ans = 0;
for (int i = 0; i < sz; i++){
for (int j = i+1; j < sz; j++){
int leftCnt = 0, rightCnt = 0;
for (int k = 0; k < sz; k++){
if (k == i || k == j)continue;
if (p[k].orientation(p[i], p[j]) == 1)leftCnt++;
if (p[k].orientation(p[i], p[j]) == -1)rightCnt++;
}
if (leftCnt == rightCnt && leftCnt == (sz/2-1))ans++;
}
}
cout << ans << '\n';
return 0;
}
有什么方法可以优化解决方案?
答案 0 :(得分:1)
有一种简单的方法可以在O(n ^ 2 log n)时间内完成此操作。
for each point O in the set
for each point A /= O
calculate the slope of the ray OA
sort the points by the slope (this is the n log n limiting step)
for each point A /= O
determine how many points are at either side of the line OA (this is an O(1) job)
也许可以减少排序时间,因为将极坐标转换为另一个原点时,排序后的斜率数组几乎可以排序(仅需要O(n)时间才能完全排序),但是我无法证明这一点此刻。