从某种意义上说,这与从包含k + 1个元素的数组中生成大小为k的子集的问题相反。
例如,如果有人给我{a,b},{a,c},{b,c},{a,e},{b,e},{a,f}对,我需要一种算法,该算法将告诉我三胞胎{a,b,c}和(a,b,e}在给定给我的对中完全成对组合。我需要将示例中的对/三胞胎概括为案例k / k + 1
我的直觉是,将有一个文档齐全且有效的算法可以解决我的问题。可悲的是,搜索互联网并没有帮助获得它。已经在stackoverflow中发布的问题不能解决此问题。因此,我不得不发布此问题以找到我的解决方案。
答案 0 :(得分:0)
我对此并不熟悉,并且您没有要求使用特定的语言,因此我编写了一种C#算法,可以完成您所要求的并匹配提供的测试值。它没有太多实际的错误检查。我有一个.Net小提琴,您可以运行它来在Web浏览器中查看结果。 https://dotnetfiddle.net/ErwTeg
通过将数组(或类似容器)的数组转换为字典,并将每个唯一值作为键,而每个键的值就是在该键的任何列表中找到的每个值,则可以正常工作。从您的示例中,a
得到{b,c,e,f}
(我们称他们为朋友,而这就是GetFriends
函数的作用)
AreFriendsWithEachother
函数指示所有传递的值是否与其他所有值都是朋友。
然后,将朋友列表的结果馈送到MakeTeam
函数,该函数通过枚举键具有的每个朋友并尝试对每个size
长度进行排列来组成给定size
的团队这些。例如,在原始示例中,a
具有{{a,b,c},{a,b,e},{a,b,f},{a,c,b},{a,c,e},{a,c,f},{a,e,b},{a,e,c},{a,e,f},{a,f,b},{a,f,c},{a,f,e}}
的朋友排列。在这些中,我们通过检查我们先前创建的朋友列表来确保所有三个值都是朋友。如果排列中的所有值都是朋友,则将其添加到结果缓存中。然后将针对所有重复集剔除结果。在C#中,这可以通过使用HashSet
来处理,该方法仅添加列表中尚未包含的项目。
MakeTeam
函数看起来很糟糕,因为它包含运行时变量数量的循环(通常由foreach
可视化)。我在枚举器中上下滚动并自己模拟foreach
循环。
我提供了MakeTeamOf3
和MakeTeamOf4
的版本,这些版本显示了静态循环结构,当您提前知道k
的值时,就很容易修改它们。
此处提供了相同的代码
using System;
using System.Collections.Generic;
using System.Linq;
namespace kfromkm1 // k elements from k minus 1
{
public class Program
{
static readonly string[][] pairs =
{
new string[] { "a", "b" },
new string[] { "a", "c" },
new string[] { "b", "c" },
new string[] { "a", "e" },
new string[] { "b", "e" },
new string[] { "a", "f" }
};
static readonly string[][] pairsExpectedResult =
{
new string[] { "a", "b", "c" },
new string[] { "a", "b", "e" }
};
static readonly string[][] triplets =
{
new string[] { "a", "b", "c" },
new string[] { "a", "b", "d" },
new string[] { "a", "c", "d" },
new string[] { "b", "c", "d" },
new string[] { "b", "c", "e" }
};
static readonly string[][] tripletsExpectedResults =
{
new string[] { "a", "b", "c", "d" }
};
public static void Main(string[] args)
{
Dictionary<string, HashSet<string>> friendsList = GetFriends(pairs);
Dump(nameof(pairs), pairs);
Console.WriteLine();
Dump(nameof(pairsExpectedResult), pairsExpectedResult);
Console.WriteLine();
HashSet<HashSet<string>> teams = MakeTeams(friendsList, 3);
Dump(nameof(teams), teams);
Console.WriteLine();
friendsList = GetFriends(triplets);
Dump(nameof(triplets), triplets);
Console.WriteLine();
Dump(nameof(tripletsExpectedResults), tripletsExpectedResults);
Console.WriteLine();
teams = MakeTeams(friendsList, 4);
Dump(nameof(teams), teams);
Console.ReadLine();
}
// helper function to display results
static void Dump<T>(string name, IEnumerable<IEnumerable<T>> values)
{
Console.WriteLine($"{name} =");
int line = 0;
bool notfirst;
foreach (IEnumerable<T> layer in values)
{
Console.Write($"{line}: {{");
notfirst = false;
foreach (T value in layer)
{
if (notfirst)
Console.Write($", {value}");
else
{
Console.Write(value);
notfirst = true;
}
}
Console.WriteLine("}");
line++;
}
}
// items are friends if they show up in a set (pair in the example) together
// list can be a list of lists, array of arrays, list of arrays, etc
// {a, b} means a and b are friends
// {a, b, c} means a is friends with b and c, b is friends with a and c, c is friends with a and b
static Dictionary<T, HashSet<T>> GetFriends<T>(IEnumerable<IEnumerable<T>> list) where T : IEquatable<T>
{
Dictionary<T, HashSet<T>> result = new Dictionary<T, HashSet<T>>();
foreach (IEnumerable<T> set in list) // one set at a time
{
foreach (T current in set) // enumerate the set from front to back
{
foreach (T other in set) // enumerate the set with a second pointer to compare every item
{
if (!current.Equals(other)) // ignore self
{
if (!result.ContainsKey(current)) // initialize this item's result hashset
result[current] = new HashSet<T>();
result[current].Add(other); // add friend (hashset will ignore duplicates)
}
}
}
}
return result;
}
// indicates whether or not all items are friends
static bool AreFriendsWithEachother<T>(Dictionary<T, HashSet<T>> friendsList, IEnumerable<T> values)
{
if (friendsList == null) // no list = no results
throw new ArgumentNullException(nameof(friendsList));
foreach (T first in values)
{
if (!friendsList.ContainsKey(first)) // not on list, has no friends
return false;
foreach (T other in values)
{
if (!friendsList[first].Contains(other) && !first.Equals(other)) // false if even one doesn't match, don't count self as non-friend for computational ease
return false;
}
}
return true; // all matched so true
}
// size represents how many items should be in each team
static HashSet<HashSet<T>> MakeTeams<T>(Dictionary<T, HashSet<T>> friendsList, int size) where T : IEquatable<T>
{
if (friendsList == null) // no list = no results
throw new ArgumentNullException(nameof(friendsList));
if (size < 2)
throw new ArgumentOutOfRangeException(nameof(size), size, "Size should be greater than 2");
HashSet<HashSet<T>> result = new HashSet<HashSet<T>>(HashSet<T>.CreateSetComparer());
T[] values = new T[size];
IEnumerator<T>[] enumerators = new IEnumerator<T>[size - 1]; // gotta cache our own enumerators with a variable number of "foreach" layers
int layer;
bool moveNext;
foreach (T key in friendsList.Keys) // this is a mess because it's a runtime variable number of copies of enumerators running over the same list
{
values[0] = key;
for (int index = 0; index < size - 1; index++)
enumerators[index] = friendsList[key].GetEnumerator();
moveNext = true;
layer = 0;
while (moveNext)
{
while (layer < size - 1 && moveNext)
{
if (enumerators[layer].MoveNext())
layer++;
else
{
if (layer == 0)
moveNext = false;
else
{
enumerators[layer].Reset();
layer--;
}
}
}
for (int index = 1; index < size; index++)
values[index] = enumerators[index - 1].Current;
if (values.Distinct().Count() == size && AreFriendsWithEachother(friendsList, values))
result.Add(new HashSet<T>(values));
layer--;
}
}
return result;
}
// provided as an example
static HashSet<HashSet<T>> MakeTeamsOf3<T>(Dictionary<T, HashSet<T>> friendsList) where T : IEquatable<T>
{
if (friendsList == null) // no list = no results
throw new ArgumentNullException(nameof(friendsList));
HashSet<HashSet<T>> result = new HashSet<HashSet<T>>(HashSet<T>.CreateSetComparer());
T[] values;
foreach (T key in friendsList.Keys) // start with every key
{
foreach (T first in friendsList[key])
{
foreach (T second in friendsList[key])
{
values = new T[] { key, first, second };
if (values.Distinct().Count() == 3 && AreFriendsWithEachother(friendsList, values)) // there's no duplicates and they are friends
result.Add(new HashSet<T>(values));
}
}
}
return result;
}
// provided as an example
static HashSet<HashSet<T>> MakeTeamsOf4<T>(Dictionary<T, HashSet<T>> friendsList) where T : IEquatable<T>
{
if (friendsList == null) // no list = no results
throw new ArgumentNullException(nameof(friendsList));
HashSet<HashSet<T>> result = new HashSet<HashSet<T>>(HashSet<T>.CreateSetComparer());
T[] values;
foreach (T key in friendsList.Keys) // start with every key
{
foreach (T first in friendsList[key])
{
foreach (T second in friendsList[key])
{
foreach (T third in friendsList[key])
{
values = new T[] { key, first, second, third };
if (values.Distinct().Count() == 4 && AreFriendsWithEachother(friendsList, values)) // there's no duplicates and they are friends
result.Add(new HashSet<T>(values));
}
}
}
}
return result;
}
}
}
答案 1 :(得分:0)
生成SetOfkNbrdElementCombinations的函数 //生成k值大于2(成对)的输出
Take SetOfkNbrdElementCombinations as an input
//Example - {{a,b},{b,c},...} : here k is 2 (though variable name will retain the letter k); elements are a,b,c,..; sets {a,b}, {b,c} are 2-numbered combinations of elements
Take nextSize as an input
//nextSize should be bigger than the k in the input SetOfkNbrdElementCombinations by 1.
//For example above where k is 2, nextSize would be 3
//Logic:
Comb(SetOfkNbrdElementCombinations={S1,S2,...Sn},nextSize) = {S1,Comb({SetOfkNbrdElementCombinations-a1},nextSize-l)}
//The recursive algorithm specified in the line above generates sets containing unique nextSize numbered combinations of the combinations in SetOfkNbrdElementCombinations
//Code that implements the algorithm is available at Rosetta code
//In our example it would generate {{{a,b},{b,c},{b,e}},{{a,b},{b,c},{a,c}},...} (triplets of pairs)
//My logic to generate nextSize numbered combinations of elements is below
// Example of my output, based on the example input above, would be {{a,b,c},{a,c,e},...}
Intitialize oputSetOfkNbrdElementCombinations to empty
For each nextSize sized combination of combinations generated above
Join the contained combinations in a union set
If the nbr of elements in the union is nextSize, add the union set to oputSetOfkNbrdElementCombinations
Output oputSetOfkNbrdElementCombinations
这是该算法的Java实现。您可以在https://ide.geeksforgeeks.org/
上复制,粘贴和运行/* This program takes k sized element combinations and generates the k+1 sized element combinations
that are possible.
For example if the program is given {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}, {b,c,e}
which are 3 sized combinations, it will identify {a,b,c,d} the
4 sized combination that has all the 3 sized combinations of its elements covered
in what were provided to the program
The program can scale to higher values of k.
The program uses only the hashset data structure
*/
//AUTHOR: Suri Chitti
import java.util.*;
public class uppOrdCombsFromCombs {
//sample CSV strings...let us pretend they came from a file
//This is a sample of input to the program
static String[] csvStrings = new String[] {
"a,b,c",
"a,b,d",
"a,c,d",
"b,c,d",
"b,c,e"
};
/* //Another sample CSV strings...let us pretend they came from a file
//This is another sample of input to the program
static String[] csvStrings = new String[] {
"a,b",
"b,c",
"a,c",
"c,e",
"a,e"
};
*/ /////USE ONLY ONE SAMPLE
//Before we can generate a k+1 sized combination of elements from a bunch
//of k sized combinations we need to obtain groups containing k+1 number of
// k sized combinations
//The method below, called SetOfNxtSizeNbrdkElementCombinationsets will do it for us
//It takes a bunch of k sized combinations called the parameter hsSetOfkNbrdCombinationsetsPrm
//which is a hashset.
//It also takes k+1 as input called the parameter nextSize which is an integer
//Outputs k+1 sized groups of k sized element combinations as a variable called hsSetOfNxtSizeNbrdCombinationsets
//which is hashset
static HashSet SetOfNxtSizeNbrdCombinationsets(HashSet hsSetOfkNbrdCombinationsetsPrm, Integer nextSize){
HashSet hsSetOfNxtSizeNbrdCombinationsets = new HashSet<>();//is it better to have nested <HashSet> tokens in this declaration?
HashSet hsRecursor = new HashSet<>(hsSetOfkNbrdCombinationsetsPrm);
Iterator <HashSet> loopIterator1 = hsSetOfkNbrdCombinationsetsPrm.iterator();
while (loopIterator1.hasNext()) {
HashSet hsName = loopIterator1.next();
if(nextSize == 1){
hsSetOfNxtSizeNbrdCombinationsets.add(hsName);
}
else {
HashSet hsConc1 = new HashSet<>();
hsRecursor.remove(hsName);
hsConc1 = SetOfNxtSizeNbrdCombinationsets(hsRecursor,nextSize-1);
Iterator <HashSet> loopIterator2 = hsConc1.iterator();
while (loopIterator2.hasNext()) {
HashSet hsConc2 = new HashSet<>();
HashSet hsConc3 = new HashSet<>();
hsConc2 = loopIterator2.next();
Iterator <HashSet> loopIterator3 = hsConc2.iterator();
Object obj = loopIterator3.next();
if (String.class.isInstance(obj)) {
hsConc3.add(hsName);
hsConc3.add(hsConc2);
}
else {
loopIterator3 = hsConc2.iterator();
hsConc3.add(hsName);
while (loopIterator3.hasNext()) {
hsConc3.add(loopIterator3.next());
}
}
hsSetOfNxtSizeNbrdCombinationsets.add(hsConc3);
}
}
}
return hsSetOfNxtSizeNbrdCombinationsets;
}
//The method below takes the k+1 sized groupings of k sized element combinations
//generated by the method above and generates all possible K+1 sized combinations of
//elements contained in them
//Name of the method is SetOfkNbrdCombinationsets
//It takes the k+1 sized groupings in a parameter called hsSetOfNxtSizeNbrdCombinationsetsPrm which is a HashSet
//It takes the value k+1 as a parameter called nextSize which is an Integer
//It returns k+1 sized combinations as a variable called hsSetOfkNbrdCombinationsets which is a HashSet
//This is the intended output of the whole program
static HashSet SetOfkNbrdCombinationsets(HashSet hsSetOfNxtSizeNbrdCombinationsetsPrm, Integer nextSize){
HashSet hsSetOfkNbrdCombinationsets = new HashSet<>();
HashSet hsMember = new HashSet<>();
Iterator <HashSet> loopIteratorOverParam = hsSetOfNxtSizeNbrdCombinationsetsPrm.iterator();
while (loopIteratorOverParam.hasNext()) {
hsMember = loopIteratorOverParam.next();
HashSet hsInnerUnion = new HashSet<>();
Iterator <HashSet> loopIteratorOverMember = hsMember.iterator();
while (loopIteratorOverMember.hasNext()) {
HashSet hsInnerMemb = new HashSet<>(loopIteratorOverMember.next());
hsInnerUnion.addAll(hsInnerMemb);
}
if (hsInnerUnion.size()==nextSize) {
HashSet hsTemp = new HashSet<>(hsInnerUnion);
hsSetOfkNbrdCombinationsets.add(hsTemp);
}
hsInnerUnion.clear();
}
return hsSetOfkNbrdCombinationsets;
}
public static void main(String args[]) {
HashSet hsSetOfkNbrdCombinationsets = new HashSet<>();//should this have nested <HashSet> tokens?
HashSet hsSetOfNxtSizeNbrdCombinationsets = new HashSet<>();//should this have nested <HashSet> tokens?
Integer innerSize=0,nextSize = 0;
System.out.println("Ahoy");
//pretend we are looping through lines in a file here
for(String line : csvStrings)
{
String[] linePieces = line.split(",");
List<String> csvPieces = new ArrayList<String>(linePieces.length);
for(String piece : linePieces)
{
//System.out.println(piece); will print each piece in separate lines
csvPieces.add(piece);
}
innerSize = csvPieces.size();
Set<String> hsInner = new HashSet<String>(csvPieces);
hsSetOfkNbrdCombinationsets.add(hsInner);
}
nextSize = innerSize+1; //programmatically obtain nextSize
hsSetOfNxtSizeNbrdCombinationsets = SetOfNxtSizeNbrdCombinationsets(hsSetOfkNbrdCombinationsets,nextSize);
hsSetOfkNbrdCombinationsets = SetOfkNbrdCombinationsets(hsSetOfNxtSizeNbrdCombinationsets, nextSize);
System.out.println("The " + nextSize + " sized combinations from elements present in the input combinations are: " + hsSetOfkNbrdCombinationsets);
} //end of main
} //end of class