因此,{@ 1}}和input = [1, 2, 3]
会返回:
k=2
这是我最接近我想要的,但不完全是:http://algorithms.tutorialhorizon.com/print-all-combinations-of-subset-of-size-k-from-given-array/
1 2
1 3
2 1
2 3
3 1
3 2
^缺少function subsetsOfSize(a, used, startIndex, currentSize, k) {
if (currentSize === k) {
for (var i = 0; i < a.length; i++) {
if (used[i])
console.log(a[i]);
}
console.log('-');
return;
}
if (startIndex === a.length)
return;
used[startIndex] = true;
subsetsOfSize(a, used, startIndex+1, currentSize+1, k);
used[startIndex] = false;
subsetsOfSize(a, used, startIndex+1, currentSize, k);
}
var input = [1,2,3];
subsetsOfSize(input, Array(input.length).fill(false), 0, 0, 2);
,2 1
,3 1
等结果
其次,我不确定我是否正确地命名了这个问题,因为“大小为k的子集的所有组合”的解决方案没有给出预期的答案。
答案 0 :(得分:3)
查找k子集排列的递归解决方案(伪代码):
kSubsetPermutations(partial, set, k) {
for (each element in set) {
if (k equals 1) {
store partial + element
}
else {
make copy of set
remove element from copy of set
recurse with (partial + element, copy of set, k - 1)
}
}
}
以下是一个例子:
输入:[a,b,c,d,e]
k:3
partial = [], set = [a,b,c,d,e], k = 3
partial = [a], set = [b,c,d,e], k = 2
partial = [a,b], set = [c,d,e], k = 1 -> [a,b,c], [a,b,d], [a,b,e]
partial = [a,c], set = [b,d,e], k = 1 -> [a,c,b], [a,c,d], [a,c,e]
partial = [a,d], set = [b,c,e], k = 1 -> [a,d,b], [a,d,c], [a,d,e]
partial = [a,e], set = [b,c,d], k = 1 -> [a,e,b], [a,e,c], [a,e,d]
partial = [b], set = [a,c,d,e], k = 2
partial = [b,a], set = [c,d,e], k = 1 -> [b,a,c], [b,a,d], [b,a,e]
partial = [b,c], set = [a,d,e], k = 1 -> [b,c,a], [b,c,d], [b,c,e]
partial = [b,d], set = [a,c,e], k = 1 -> [b,d,a], [b,d,c], [b,d,e]
partial = [b,e], set = [a,c,d], k = 1 -> [b,e,a], [b,e,c], [b,e,d]
partial = [c], set = [a,b,d,e], k = 2
partial = [c,a], set = [b,d,e], k = 1 -> [c,a,b], [c,a,d], [c,a,e]
partial = [c,b], set = [a,d,e], k = 1 -> [c,b,a], [c,b,d], [c,b,e]
partial = [c,d], set = [a,b,e], k = 1 -> [c,d,a], [c,d,b], [c,d,e]
partial = [c,e], set = [a,b,d], k = 1 -> [c,e,a], [c,e,b], [c,e,d]
partial = [d], set = [a,b,c,e], k = 2
partial = [d,a], set = [b,c,e], k = 1 -> [d,a,b], [d,a,c], [d,a,e]
partial = [d,b], set = [a,c,e], k = 1 -> [d,b,a], [d,b,c], [d,b,e]
partial = [d,c], set = [a,b,e], k = 1 -> [d,c,a], [d,c,b], [d,c,e]
partial = [d,e], set = [a,b,c], k = 1 -> [d,e,a], [d,e,b], [d,e,c]
partial = [e], set = [a,b,c,d], k = 2
partial = [e,a], set = [b,c,d], k = 1 -> [e,a,b], [e,a,c], [e,a,d]
partial = [e,b], set = [a,c,d], k = 1 -> [e,b,a], [e,b,c], [e,b,d]
partial = [e,c], set = [a,b,d], k = 1 -> [e,c,a], [e,c,b], [e,c,d]
partial = [e,d], set = [a,b,c], k = 1 -> [e,d,a], [e,d,b], [e,d,c]
function kSubsetPermutations(set, k, partial) {
if (!partial) partial = []; // set default value on first call
for (var element in set) {
if (k > 1) {
var set_copy = set.slice(); // slice() creates copy of array
set_copy.splice(element, 1); // splice() removes element from array
kSubsetPermutations(set_copy, k - 1, partial.concat([set[element]]));
} // a.concat(b) appends b to copy of a
else document.write("[" + partial.concat([set[element]]) + "] ");
}
}
kSubsetPermutations([1,2,3,4,5], 3);
&#13;
答案 1 :(得分:1)
尝试排列。而不是组合。
尝试生成排列,然后调整数组大小。
此处已实施,已从here修改
var permArr = [],
usedChars = [];
function permute(input, k) {
var i, ch;
for (i = 0; i < input.length; i++) {
ch = input.splice(i, 1)[0];
usedChars.push(ch);
if (input.length == 0) {
var toadd = usedChars.slice(0,k);
if(!permArr.includes(toadd)) permArr.push(toadd); // resizing the returned array to size k
}
permute(input, k);
input.splice(i, 0, ch);
usedChars.pop();
}
return permArr
};
console.log(JSON.stringify(permute([1, 2, 3], 2)));
&#13;
答案 2 :(得分:0)
我是一个简单的人:
制作一个大小为k
的数组M.用零填充M
循环:
M [0] + = 1
循环M:* if(M [i]> = N的大小)然后设置M [i] = 0并增加M [i + 1] + = 1
如果M只有不同的数字,那么你就会发现自己是a的指数 n的子集
当p的最后一个元素达到n的大小时,循环结束 - 减去一个a.k.a. *条件会导致错误