我正在尝试以下代码:
import tensorflow as tf
from keras.layers import Input, Dense
from keras.models import Model, Sequential
from keras.layers import Conv2D, Concatenate
from keras.utils.vis_utils import plot_model
if __name__ == '__main__':
imgRows = imgCols = 28
print ("ImgRow and imgCols " , imgRows, imgCols)
inputLayer = Input(shape=( 1,28,28))
conv1 = Conv2D(64,(3,3),strides=1, padding="same", activation='relu') (inputLayer)
#Residual 1
skip = Conv2D(128, (1,1), strides=1, padding="same", activation='relu') (conv1)
conv1 = Conv2D(128, (3,3), strides=3, padding="same", activation='relu') (skip)
conv1 = Conv2D(128, (3,3), strides=3, padding="same", activation='relu') (conv1)
r1= Concatenate([skip, conv1])
#residual 2
conv1 = Conv2D(128, (3,3), strides=3, padding="same", activation='relu') (r1)
conv1 = Conv2D(128, (3,3), strides=3, padding="same", activation='relu') (conv1)
conv1= Concatenate([r1, conv1])
# Residual 3
skip = Conv2D(256, (1,1), strides=1, padding="same", activation='relu') (conv1)
conv1 = Conv2D(256, (3,3), strides=3, padding="same", activation='relu') (conv1)
conv1 = Conv2D(256, (3,3), strides=3, padding="same", activation='relu') (conv1)
conv1= Concatenate([skip, conv1])
out = Conv2D(1, (1,1), strides=1, padding="same", activation='sigmoid') (conv1)
#model = Sequential()
#model.add (inputLayer)
#model.add ( conv1)
model = Model(input=inputLayer, output=conv1)
model.compile(optimizer=Nadam(lr=1e-5), loss="mean_square_error")
plot_model (model, to_file="./keestu_model.png", show_shapes=True)
我收到以下错误:
错误消息是:
ValueError: Layer conv2d_5 was called with an input that isn't a
symbolic tensor. Received type: <class 'keras.layers.merge.Concatenate'>.
Full input: [<keras.layers.merge.Concatenate object at 0x7fd543841590>].
All inputs to the layer should be tensors.
问题?
错误消息对我来说很清楚,第5层希望将其输入作为张量对象而不是连接对象。但是我该如何解决?
答案 0 :(得分:2)
这是因为Concatenate
是具有两个API版本的图层类:
Concatenate()([tensor1, tensor2])
创建一个串联的新实例,并将其应用于给定的张量。这是标准的功能API样式。concatenate([tensor1, tensor2])
将实现相同的功能,但会为您创建一个隐式实例。从documentation:
keras.layers.concatenate(inputs,axis = -1):连接层的功能接口。
为方便起见,所有merge layers都具有此双重接口。