keras:连接两个图像作为输入(DeepVO)

时间:2018-03-02 03:21:37

标签: tensorflow deep-learning keras conv-neural-network opticalflow

我试图实施this paper中描述的模型 我遇到问题的一个项目是设置输入,这应该是堆叠的两个图像,这意味着,我有一组连续的(i & i+1)图像 2048x2048x1 (单色) ,因此输入张量将 2048x2048x2 ,但神经网络的每个连续输入将是以下一组图像(i+1 & i+2)。 到目前为止我已经

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Concatenate, Activation, Conv2D, MaxPooling2D, Flatten, Input
from keras.klayers import Embedding,LSTM 

inp1 = Input((2048,2048,1))
inp2 = Input((2048,2048,1))
deepVO = Sequential()
deepVO.add(Concatenate(inp1,inp2,-1))
deepVO.add(Conv2D(64,(2,2)))
deepVO.add(Activation('relu'))
#....continue to add other layers

我在deepVO_CNN.add(Concatenate(inp1,inp2,-1))得到的错误是:

  

TypeError:__ init __()取1到2个位置参数,但是给出了4个。

1 个答案:

答案 0 :(得分:3)

尝试这样的keras api模式:

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, Conv2D, MaxPooling2D, Flatten, Input, concatenate

from keras.models import Model

inp1 = Input((2048,2048,1))
inp2 = Input((2048,2048,1))

deepVO = concatenate([inp1, inp2],axis=-1)
deepVO = Conv2D(64,(2,2))(deepVO)
deepVO = Activation('relu')(deepVO)
...

...
outputs = Dense(num_classes, activation='softmax')(deepVO)
deepVO = Model([inp1, inp2], outputs)
#deepVO.summary()