我试图在keras-2函数API中将输入与常量张量连接起来。在我的实际问题中,常量取决于设置中的一些参数,但我认为下面的示例显示了我得到的错误。
from keras.layers import*
from keras.models import *
from keras import backend as K
import numpy as np
a = Input(shape=(10, 5))
a1 = Input(tensor=K.variable(np.ones((10, 5))))
x = [a, a1] # x = [a, a] works fine
b = concatenate(x, 1)
x += [b] # This changes b._keras_history[0].input
b = concatenate(x, 1)
model = Model(a, b)
我得到的错误是:
ValueError Traceback (most recent call last)
~/miniconda3/envs/ds_tools/lib/python3.6/site-packages/keras/engine/topology.py in assert_input_compatibility(self, inputs)
418 try:
--> 419 K.is_keras_tensor(x)
420 except ValueError:
~/miniconda3/envs/ds_tools/lib/python3.6/site-packages/keras/backend/theano_backend.py in is_keras_tensor(x)
198 T.sharedvar.TensorSharedVariable)):
--> 199 raise ValueError('Unexpectedly found an instance of type `' + str(type(x)) + '`. '
200 'Expected a symbolic tensor instance.')
ValueError: Unexpectedly found an instance of type `<class 'theano.gpuarray.type.GpuArraySharedVariable'>`. Expected a symbolic tensor instance.
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
<ipython-input-2-53314338ab8e> in <module>()
5 a1 = Input(tensor=K.variable(np.ones((10, 5))))
6 x = [a, a1]
----> 7 b = concatenate(x, 1)
8 x += [b] # This changes b._keras_history[0].input
9 b = concatenate(x, 1)
~/miniconda3/envs/ds_tools/lib/python3.6/site-packages/keras/layers/merge.py in concatenate(inputs, axis, **kwargs)
506 A tensor, the concatenation of the inputs alongside axis `axis`.
507 """
--> 508 return Concatenate(axis=axis, **kwargs)(inputs)
509
510
~/miniconda3/envs/ds_tools/lib/python3.6/site-packages/keras/engine/topology.py in __call__(self, inputs, **kwargs)
550 # Raise exceptions in case the input is not compatible
551 # with the input_spec specified in the layer constructor.
--> 552 self.assert_input_compatibility(inputs)
553
554 # Collect input shapes to build layer.
~/miniconda3/envs/ds_tools/lib/python3.6/site-packages/keras/engine/topology.py in assert_input_compatibility(self, inputs)
423 'Received type: ' +
424 str(type(x)) + '. Full input: ' +
--> 425 str(inputs) + '. All inputs to the layer '
426 'should be tensors.')
427
ValueError: Layer concatenate_2 was called with an input that isn't a symbolic tensor. Received type: <class 'theano.gpuarray.type.GpuArraySharedVariable'>. Full input: [concatenate_1/input_3, concatenate_1/variable]. All inputs to the layer should be tensors.
我正在使用theano后端运行keras版本2.0.5
,其中包含theano版本0.10.0dev1
。关于什么是错误的或者更正确的方法来实现连接的任何想法?
答案 0 :(得分:1)
keras的尺寸如下:
Keras向您显示None
来表示摘要,错误和其他方面的批量大小。
这意味着:
您可以执行一些变通方法,例如创建带形状的a1(1,10,5),然后在批量维度中重复它的值:
constant=K.variable(np.ones((1,10, 5)))
constant = K.repeat_elements(constant,rep=batch_size,axis=0)
我完全无法使用Input(tensor=...)
,因为常量的维度是固定的,输入的维度是None
,所以我使用lambda图层来处理它:
b = Lambda(lambda x: K.concatenate([x,constant],axis=1),output_shape=(20,5))(a)
但我完全不了解你想用x += [b]
和其他人实现的目标。