我有一个有两层神经网络的例子。第一层有两个参数,有一个输出。第二个应该采用一个参数作为第一层和另一个参数的结果。它应该是这样的:
public class MainScreenRecyclerAdapter extends RecyclerView.Adapter<MainScreenRecyclerAdapter.ViewHolder> {
private List<String> dataset;
public static class ViewHolder extends RecyclerView.ViewHolder {
public ImageView imageView;
public ViewHolder(ImageView v) {
super(v);
imageView = v;
}
}
// TODO: Should I make the list contain Video/Result objects and pull the data from that?
public MainScreenRecyclerAdapter(List<String> dataset) {
dataset = dataset;
}
// Create new views
@Override
public MainScreenRecyclerAdapter.ViewHolder onCreateViewHolder(ViewGroup parent, int viewType) {
// create a new view
ImageView v = (ImageView) LayoutInflater.from(parent.getContext())
.inflate(R.layout.thumbnail_view, parent, false);
ViewHolder vh = new ViewHolder(v);
return vh;
}
// Replace the contents of a view (invoked by the layout manager)
@Override
public void onBindViewHolder(ViewHolder holder, int position) {
// - get element from dataset at this position
// - replace the contents of hte view with that element
// TODO: Call to picasso to load image into holder.imageView
String imageUrl = dataset.get(position);
Timber.d("Image URL: " + imageUrl);
ImageView view = holder.imageView;
Picasso.with(MainActivity.context).load(imageUrl).into(view);
}
// Return the size of your dataset (invoked by the layout manager)
@Override
public int getItemCount() {
return dataset.size();
}
}
所以,我创建了一个包含两个图层的模型并尝试合并它们,但它在行x1 x2 x3
\ / /
y1 /
\ /
y2
上返回错误:The first layer in a Sequential model must get an "input_shape" or "batch_input_shape" argument.
。
型号:
result.add(merged)
答案 0 :(得分:82)
您收到错误是因为result
定义为Sequential()
只是模型的容器,而您尚未为其定义输入。
考虑到您尝试构建集result
以获取第三个输入x3
。
first = Sequential()
first.add(Dense(1, input_shape=(2,), activation='sigmoid'))
second = Sequential()
second.add(Dense(1, input_shape=(1,), activation='sigmoid'))
third = Sequential()
# of course you must provide the input to result with will be your x3
third.add(Dense(1, input_shape=(1,), activation='sigmoid'))
# lets say you add a few more layers to first and second.
# concatenate them
merged = Concatenate([first, second])
# then concatenate the two outputs
result = Concatenate([merged, third])
ada_grad = Adagrad(lr=0.1, epsilon=1e-08, decay=0.0)
result.compile(optimizer=ada_grad, loss='binary_crossentropy',
metrics=['accuracy'])
但是,我构建具有此类输入结构的模型的首选方法是使用functional api。
以下是您开始使用的要求的实现:
from keras.models import Model
from keras.layers import Concatenate, Dense, LSTM, Input, concatenate
from keras.optimizers import Adagrad
first_input = Input(shape=(2, ))
first_dense = Dense(1, )(first_input)
second_input = Input(shape=(2, ))
second_dense = Dense(1, )(second_input)
merge_one = concatenate([first_dense, second_dense])
third_input = Input(shape=(1, ))
merge_two = concatenate([merge_one, third_input])
model = Model(inputs=[first_input, second_input, third_input], outputs=merge_two)
ada_grad = Adagrad(lr=0.1, epsilon=1e-08, decay=0.0)
model.compile(optimizer=ada_grad, loss='binary_crossentropy',
metrics=['accuracy'])
要回答评论中的问题:
1)结果和合并如何连接?假设你的意思是它们如何连接起来。
连接的工作原理如下:
a b c
a b c g h i a b c g h i
d e f j k l d e f j k l
即行刚刚加入。
2)现在,x1
输入到第一个,x2
输入到第二个,x3
输入到第三个。
答案 1 :(得分:4)
您可以试用model.summary()
(注意concatenate_XX(连接)图层大小)
# merge samples, two input must be same shape
inp1 = Input(shape=(10,32))
inp2 = Input(shape=(10,32))
cc1 = concatenate([inp1, inp2],axis=0) # Merge data must same row column
output = Dense(30, activation='relu')(cc1)
model = Model(inputs=[inp1, inp2], outputs=output)
model.summary()
# merge row must same column size
inp1 = Input(shape=(20,10))
inp2 = Input(shape=(32,10))
cc1 = concatenate([inp1, inp2],axis=1)
output = Dense(30, activation='relu')(cc1)
model = Model(inputs=[inp1, inp2], outputs=output)
model.summary()
# merge column must same row size
inp1 = Input(shape=(10,20))
inp2 = Input(shape=(10,32))
cc1 = concatenate([inp1, inp2],axis=1)
output = Dense(30, activation='relu')(cc1)
model = Model(inputs=[inp1, inp2], outputs=output)
model.summary()
您可以在此处查看笔记本以获取详细信息: https://nbviewer.jupyter.org/github/anhhh11/DeepLearning/blob/master/Concanate_two_layer_keras.ipynb
答案 2 :(得分:3)
添加到上面接受的答案中,以帮助使用tensorflow 2.0
的人
import tensorflow as tf
# some data
c1 = tf.constant([[1, 1, 1], [2, 2, 2]], dtype=tf.float32)
c2 = tf.constant([[2, 2, 2], [3, 3, 3]], dtype=tf.float32)
c3 = tf.constant([[3, 3, 3], [4, 4, 4]], dtype=tf.float32)
# bake layers x1, x2, x3
x1 = tf.keras.layers.Dense(10)(c1)
x2 = tf.keras.layers.Dense(10)(c2)
x3 = tf.keras.layers.Dense(10)(c3)
# merged layer y1
y1 = tf.keras.layers.Concatenate(axis=1)([x1, x2])
# merged layer y2
y2 = tf.keras.layers.Concatenate(axis=1)([y1, x3])
# print info
print("-"*30)
print("x1", x1.shape, "x2", x2.shape, "x3", x3.shape)
print("y1", y1.shape)
print("y2", y2.shape)
print("-"*30)
结果:
------------------------------
x1 (2, 10) x2 (2, 10) x3 (2, 10)
y1 (2, 20)
y2 (2, 30)
------------------------------