我正在尝试为以下数据绘制图表网格。有5个地点,4个物种和5个采集期。我需要每个站点,日期,物种组的质量大小频率直方图。即260个地块。我一直在玩split,lapply,cut(),aggregate()以及dplyr中的管道,但是似乎找不到任何可以干净地执行此操作的东西。
我最近得到的是:
newdata = split(data, list(data$Species,data$Site,data$Date))
histograms = lapply(newdata, function(x) {
histograms = hist(x$Mass, w=.1)
return(histograms)
})
或划分一个物种和一个地点:
infrequens = data[which(data$Species =='infrequens' & data$Site == '1'), ]
ggplot(gather(infrequens), aes(Mass)) +
geom_histogram(binwidth = .1) +
facet_wrap(~Date, scales = 'free_x')
,但要保持有关箱长度的错误。任何建议将不胜感激!谢谢!
站点日期种类BodySize质量
1 0017-03-19 grandis 7.4 2.0555241
2 0017-04-19 grandis 7.6 2.2167792
1 0017-03-19 grandis 6.6 1.4866433
1 0017-03-19 doddsii 8.2 2.7490281
4 0017-04-19 doddsii 7.0 1.7562082
3 0017-05-19 doddsii 7.8 2.3859990
1 0017-03-19 doddsii 7.8 2.3859990
1 0017-03-19 doddsii 7.6 2.2167792
5 0017-03-19 doddsii 9.0 3.5782702
5 0017-03-19 doddsii 7.2 1.9020590
1 0017-03-19 infrequens 4.2 0.4133332
1 0017-03-19 infrequens 4.2 0.4133332
1 0017-03-19 infrequens 4.6 0.5347965
2 0017-04-19 infrequens 4.8 0.6033003
2 0017-05-19 infrequens 6.2 1.2454079
4 0017-04-19 infrequens 6.8 1.6177954
1 0017-03-19 infrequens 4.0 0.3599915
2 0017-02-19 infrequens 6.0 1.1349656
3 0017-04-19 cockerelli 12.0 6.4860992
4 0017-02-19 cockerelli 11.8 6.1838799
1 0017-03-19 cockerelli 10.8 4.8092579
1 0017-03-19 doddsii 7.6 2.2167792
5 0017-03-19 grandis 7.4 2.0555241
2 0017-04-19 grandis 7.6 2.2167792
1 0017-03-19 grandis 6.6 1.4866433
1 0017-03-19 doddsii 8.2 2.7490281
4 0017-04-19 doddsii 7.0 1.7562082
3 0017-05-19 doddsii 7.8 2.3859990
5 0017-03-19 doddsii 7.8 2.3859990
1 0017-03-19 doddsii 7.6 2.2167792
5 0017-03-19 doddsii 9.0 3.5782702
5 0017-03-19 doddsii 7.2 1.9020590
1 0017-03-19 infrequens 4.2 0.4133332
1 0017-03-19 infrequens 4.2 0.4133332
1 0017-03-19 infrequens 4.6 0.5347965
2 0017-04-19 infrequens 4.8 0.6033003
2 0017-05-19 infrequens 6.2 1.2454079
1 0017-03-19 infrequens 6.8 1.6177954
2 0017-03-19 infrequens 4.0 0.3599915
1 0017-03-19 infrequens 6.0 1.1349656
3 0017-04-19 cockerelli 12.0 6.4860992
4 0017-02-19 cockerelli 11.8 6.1838799
1 0017-03-19 cockerelli 10.8 4.8092579
1 0017-03-19 doddsii 7.6 2.2167792
1 0017-03-19 grandis 7.4 2.0555241
2 0017-04-19 grandis 7.6 2.2167792
1 0017-03-19 grandis 6.6 1.4866433
1 0017-03-19 doddsii 8.2 2.7490281
4 0017-04-19 doddsii 7.0 1.7562082
3 0017-05-19 doddsii 7.8 2.3859990
1 0017-03-19 doddsii 7.8 2.3859990
3 0017-03-19 doddsii 7.6 2.2167792
5 0017-03-19 doddsii 9.0 3.5782702
5 0017-03-19 doddsii 7.2 1.9020590
1 0017-03-19 infrequens 4.2 0.4133332
3 0017-04-19 infrequens 4.2 0.4133332
1 0017-03-19 infrequens 4.6 0.5347965
2 0017-04-19 infrequens 4.8 0.6033003
2 0017-05-19 infrequens 6.2 1.2454079
5 0017-02-19 infrequens 6.8 1.6177954
5 0017-04-19 infrequens 4.0 0.3599915
1 0017-03-19 infrequens 6.0 1.1349656
3 0017-04-19 cockerelli 12.0 6.4860992
4 0017-02-19 cockerelli 11.8 6.1838799
1 0017-03-19 cockerelli 10.8 4.8092579
2 0017-03-19 doddsii 7.6 2.2167792