支持向量机:Python错误消息

时间:2018-08-19 19:35:40

标签: python python-2.7 machine-learning svm

我对机器学习还比较陌生,因此决定深入研究一些理论,然后使用一些代码进行练习。在此过程中,我收到了很多错误消息,这些错误消息都可以修复,但我对此一无所知。我也是Python的新手,所以我确定这是一些与语法相关的问题,但这次我无法确定(Python 2.7.15)。这是完整的代码:

import numpy as np
from matplotlib import pyplot as plt

# Next we input our data of the for [X, Y, Bias] in a matrix using the Numpy array method:

X = np.array([ 
    [-2, 4,-1], 
    [2, -2, -1],
    [2, 4, -1],
    [8,-4, -1],
    [9, 4, -1],
])

# Let's make another variable Y that contains the output labels for each element in the matrix:

Y = np.array([-1,-1,1,1,1])

#Now let's plot our data. We're going to use a For Loop for this:

for index,element in enumerate(X):
    if index<2:
        plt.scatter(element[0],element[1], marker="_", s=120, color="r")
    else:
        plt.scatter(element[0],element[1], marker="+", s=120, color="b")

plt.plot([-2,8], [8,0.5])
plt.show()


def svm_sgd_plot(X, Y):
    #Initialize our SVMs weight vector with zeros (3 values)
    w = np.zeros(len(X[0]))
    #The learning rate
    eta = 1
    #how many iterations to train for
    epochs = 100000
    #store misclassifications so we can plot how they change over time
    errors = []

    #training part & gradient descent part
    for epoch in range(1,epochs):
        error = 0
        for i, x in enumerate(X):
            #misclassification
            if (Y[i]*np.dot(X[i], w)) < 1:
                #misclassified update for ours weights
                w = w + eta * ( (X[i] * Y[i]) + (-2  * (1/epoch) * w) )
                error = 1
            else:
                #correct classification, update our weights
                w = w + eta * (-2  * (1/epoch) * w)
    errors.append(error)

    # lets plot the rate of classification errors during training for our SVM

    plt.plot(errors, '|')
    plt.ylim(0.5,1.5)
    plt.axes().set_yticklabels([])
    plt.xlabel('Epoch')
    plt.ylabel('Misclassified')
    plt.show()

    return w

for d, sample in enumerate(X):
        # Plot the negative samples
    if d < 2:
        plt.scatter(sample[0], sample[1], s=120, marker='_', linewidths=2)
        # Plot the positive samples
    else:
        plt.scatter(sample[0], sample[1], s=120, marker='+', linewidths=2)

# Add our test samples
plt.scatter(2,2, s=120, marker='_', linewidths=2, color='yellow')
plt.scatter(4,3, s=120, marker='+', linewidths=2, color='blue')
plt.show()

# Print the hyperplane calculated by svm_sgd()
x2=[ w[0],w[1],-w[1],w[0] ]
x3=[ w[0],w[1],w[1],-w[0] ]

x2x3 = np.array([x2,x3])
X,Y,U,V = zip(*x2x3)
ax = plt.gca()
ax.quiver(X,Y,U,V,scale=1, color='blue')

w = svm_sgd_plot(X,Y)

但是我不断收到以下错误:

  

回溯(最近一次拨打电话):文件“ C:\ Users ... \ Support Vector   机器(从头开始).py”,第134行,在       x2 = [w [0],w [1],-w [1],w [0]] NameError:名称'w'未定义

我希望知识渊博的人会有所帮助。谢谢。

1 个答案:

答案 0 :(得分:2)

首先,您在方法w中定义了svm_sgd_plot,但是在您显式调用该方法以执行某项操作之前,该方法没有执行任何操作。

例如,在绘制测试数据后,您可以通过添加行w = svm_sgd_plot(X,Y)来调用它,从而使代码成为

#PLOT TRAINING DATA

for d, sample in enumerate(X):
    # Plot the negative samples
if d < 2:
    plt.scatter(sample[0], sample[1], s=120, marker='_', linewidths=2)
    # Plot the positive samples
else:
    plt.scatter(sample[0], sample[1], s=120, marker='+', linewidths=2)

#PLOT TESTING DATA

# Add our test samples
plt.scatter(2,2, s=120, marker='_', linewidths=2, color='yellow')
plt.scatter(4,3, s=120, marker='+', linewidths=2, color='blue')
plt.show()

#CALL YOUR METHOD
w = svm_sgd_plot(X,Y)

然后,您只需要可视化您的方法提供的分类即可。我添加了您的两个测试数据观察值,以便您可以看到SVM方法如何将它们正确分类。请注意,黄点和蓝点由SVM方法生成的线隔开。

# Print the hyperplane calculated by svm_sgd()
x2=[ w[0],w[1],-w[1],w[0] ]
x3=[ w[0],w[1],w[1],-w[0] ]

x2x3 = np.array([x2,x3])
X,Y,U,V = zip(*x2x3)
ax = plt.gca()
ax.quiver(X,Y,U,V,scale=1, color='blue')
#I ADDED THE FOLLOWING THREE LINES SO THAT YOU CAN SEE HOW YOU TESTING DATA IS BEING CLASSIFIED BY YOUR SVM METHOD
plt.scatter(2,2, s=120, marker='_', linewidths=2, color='yellow')
plt.scatter(4,3, s=120, marker='+', linewidths=2, color='blue')
plt.show()

enter image description here