对于线性混合效应模型,使用lmer()函数重复发生错误

时间:2018-08-16 17:28:20

标签: r lme4 mixed-models

我尝试使用lmer包中的lme4函数构建线性混合效果模型,但遇到了重复发生的错误。该模型使用两个固定效果:

  • DBS_Electrode(因子w / 3的水平)和
  • PostOp_ICA(连续变量)。

我使用(1 | Subject)作为随机效应项,其中Subject是38个水平的因子(总共38个受试者)。下面是我尝试运行的代码行:

LMM.DBS <- lmer(Distal_Lead_Migration ~ DBS_Electrode + PostOp_ICA + (1 | Subject), data = DBS)

我收到以下错误:

  

每个分组因子的级别数必须为<观察数。

我将不胜感激,我尝试自己解决此问题,但未成功。

1 个答案:

答案 0 :(得分:0)

线性混合效应模型假定对象少于观察对象,因此如果不是,则抛出。

  

您可以认为此公式告诉模型它应该   期望每个主题都会有多个答案,并且   这些响应将取决于每个受试者的基线水平。

请咨询A very basic tutorial for performing linear mixed effects analyses by B. Winter, p. 4

在您的情况下,您应该增加每个主题的观察量(> 1)。请参见下面的模拟:

library(lme4)
set.seed(123)
n <- 38
DBS_Electrode <- factor(sample(LETTERS[1:3], n, replace = TRUE))

Distal_Lead_Migration <- 10 * abs(rnorm(n))    # Distal_Lead_Migration in cm
PostOp_ICA <- 5 * abs(rnorm(n))

# amount of observations equals to amout of subjects
Subject <- paste0("X", 1:n)
DBS <- data.frame(DBS_Electrode, PostOp_ICA, Subject, Distal_Lead_Migration)
model <- lmer(Distal_Lead_Migration ~ DBS_Electrode + PostOp_ICA + (1|Subject), data = DBS)
# Error: number of levels of each grouping factor must be < number of observations


# amount of observations more than amout of subjects
Subject <- c(paste0("X", 1:36), "X1", "X37")
DBS <- data.frame(DBS_Electrode, PostOp_ICA, Subject, Distal_Lead_Migration)
model <- lmer(Distal_Lead_Migration ~ DBS_Electrode + PostOp_ICA + (1|Subject), data = DBS)
summary(model)

输出:

Linear mixed model fit by REML ['lmerMod']
Formula: Distal_Lead_Migration ~ DBS_Electrode + PostOp_ICA + (1 | Subject)
   Data: DBS

REML criterion at convergence: 224.5

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-1.24605 -0.73780 -0.07638  0.64381  2.53914 

Random effects:
 Groups   Name        Variance  Std.Dev. 
 Subject  (Intercept) 2.484e-14 1.576e-07
 Residual             2.953e+01 5.434e+00
Number of obs: 38, groups:  Subject, 37

Fixed effects:
               Estimate Std. Error t value
(Intercept)     7.82514    2.38387   3.283
DBS_ElectrodeB  0.22884    2.50947   0.091
DBS_ElectrodeC -0.60940    2.21970  -0.275
PostOp_ICA     -0.08473    0.36765  -0.230

Correlation of Fixed Effects:
            (Intr) DBS_EB DBS_EC
DBS_ElctrdB -0.718              
DBS_ElctrdC -0.710  0.601       
PostOp_ICA  -0.693  0.324  0.219