感谢大家的帮助。我把范围缩小了一点。如果您在脚本和类中同时查看HERE并运行该脚本,您将看到发生了什么。
ADD行打印“ 789 789”
何时应打印“ 456 789”
正在发生的事情,是在 new 中,该类正在检测传入参数的类型。但是,如果传入的对象具有与构造函数相同的类型,则它似乎是将传入的对象分页到自身(在类级别),而不是返回旧的对象。我唯一想到的就是会导致456变乳。
那么,如何在构造函数中检测到与类相同类型的东西,并决定不将数据分页到类存储空间中,而是返回先前构造的对象?
import sys
import math
class Foo():
# class level property
num = int(0)
#
# Python Instantiation Customs:
#
# Processing polymorphic input new() MUST return something or
# an object?, but init() cannot return anything. During runtime
# __new__ is running at the class level, while init is running
# at the instance level.
#
def __new__(self,*arg):
print ("arg type: ", type(arg[0]).__name__)
### functionally the same as isinstance() below
#
# if (type(arg[0]).__name__) == "type":
# if arg[0].__name__ == "Foo":
# print ("\tinput was a Foo")
# return arg[0] # objects of same type intercede
### HERE <-------------------------------------
#
# this creams ALL instances, because since we are a class
# the properties of the incoming object, seem to overwride
# the class, rather than exist as a separate data structure.
if (isinstance(arg[0], Foo)):
print ("\tinput was a Foo")
return arg[0] # objects of same type intercede
elif (type(arg[0]).__name__) == "int":
print ("\tinput was an int")
self.inum = int(arg[0]) # integers store
return self
elif (type(arg[0]).__name__) == "str":
print ("\tinput was a str")
self.inum = int(arg[0]) # strings become integers
return self
return self
def __init__(self,*arg):
pass
#
# because if I can do collision avoidance, I can instantiate
# inside overloaded operators:
#
def __add__(self,*arg):
print ("add operator overload")
# no argument returns self
if not arg:
return self
# add to None or zero return self
if not arg[0]:
return self
knowntype = Foo.Foo(arg[0])
# add to unknown type returns False
if not knowntype:
return knowntype
# both values are calculable, calculate and return a Foo
typedresult = (self.inum + knowntype.inum)
return Foo.Foo(typedresult)
def __str__(self): # return a stringified int or empty string
# since integers don't have character length,
# this tests the value, not the existence of:
if self.inum:
return str(self.inum)
# so the property could still be zero and we have to
# test again for no reason.
elif self.inum == 0:
return str(self.inum)
# return an empty str if nothing is defined.
return str("")
testfoo.py:
#! /usr/bin/python
import sys
import Foo
# A python class is not transparent like in perl, it is an object
# with unconditional inheritance forced on all instances that share
# the same name.
classhandle = Foo.Foo
# The distinction between the special class object, and instance
# objects is implicitly defined by whether there is a passed value at
# constructor time. The following therefore does not work.
# classhandle = Foo.Foo()
# but we can still write and print from the class, and see it propagate,
# without having any "object" memory allocated.
print ("\nclasshandle: ", classhandle)
print ("classhandle classname: ", classhandle.__name__) # print the classname
print ("class level num: ", classhandle.num) # print the default num
classhandle.classstring = "fdsa" # define an involuntary value for all instances
print ("\n")
# so now we can create some instances with passed properties.
instance1 = Foo.Foo(int(123)) #
print ("\ninstance1: ", instance1)
print ("involuntary property derived from special class memory space: ", instance1.classstring)
print ("instance property from int: ", instance1.inum)
print ("\n")
instance2 = Foo.Foo(str("456"))
print ("\ninstance2: ", instance2)
print ("instance2 property from int: ", instance2.inum)
#
# instance3 stands for (shall we assume) some math that happened a
# thousand lines ago in a class far far away. We REALLY don't
# want to go chasing around to figure out what type it could possibly
# be, because it could be polymorphic itself. Providing a black box so
# that you don't have to do that, is after all, the whole point OOP.
#
print ("\npretend instance3 is unknowningly already a Foo")
instance3 = Foo.Foo(str("789"))
## So our class should be able to handle str,int,Foo types at constructor time.
print ("\ninstance4 should be a handle to the same memory location as instance3")
instance4 = Foo.Foo(instance3) # SHOULD return instance3 on type collision
# because if it does, we should be able to hand all kinds of garbage to
# overloaded operators, and they should remain type safe.
# HERE <-----------------------------
#
# the creation of instance4, changes the instance properties of instance2:
# below, the instance properties inum, are now both "789".
print ("ADDING: ", instance2.inum, " ", instance4.inum)
# instance6 = instance2 + instance4 # also should be a Foo object
# instance5 = instance4 + int(549) # instance5 should be a Foo object.
答案 0 :(得分:3)
在构造函数时如何返回一个非新对象?
通过重写构造方法__new__
,而不是初始化方法__init__
。
__new__
方法构造一个实例-通常通过调用超级对象的__new__
来构造实例,该实例最终会上升到object.__new__
,后者会进行实际分配和其他秘密操作,但是您可以覆盖它以返回一个预先存在的值。
__init__
方法将由__new__
构造的值传递给它,因此现在不构造该值为时已晚。
请注意,如果Foo.__new__
返回一个Foo
实例(无论是新创建的实例还是现有的实例),则将在其上调用Foo.__init__
。因此,覆盖__new__
以返回对现有对象的引用的类通常需要等幂__init__
-通常,您根本不覆盖__init__
,而是在{内进行所有初始化{1}}。
那里有许多简单的__new__
方法的示例,但让我们展示一个实际上对您要的内容进行简化的示例:
__new__
现在:
class Spam:
_instances = {}
def __new__(cls, value):
if value not in cls._instances:
cls._instances[value] = super().__new__(cls)
cls._instances[value].value = value
return cls._instances[value]
请注意,我确保使用>>> s1 = Spam(1)
>>> s2 = Spam(2)
>>> s3 = Spam(1)
>>> s1 is s2
False
>>> s1 is s3
True
而不是super
,并且使用object
1 而不是cls._instances
。所以:
Spam._instances
但是,与其将其隐藏在>>> class Eggs(Spam):
... pass
>>> e4 = Eggs(4)
>>> Spam(4)
<__main__.Eggs at 0x12650d208>
>>> Spam(4) is e4
True
>>> class Cheese(Spam):
... _instances = {}
>>> c5 = Cheese(5)
>>> Spam(5)
<__main__.Spam at 0x126c28748>
>>> Spam(5) is c5
False
方法中,不如使用类方法的替代构造函数,甚至是单独的工厂函数,可能是一个更好的选择。
对于某些类型(例如,像__new__
这样的简单不可变容器),用户没有理由关心tuple
返回一个新元组还是一个现有元组,因此覆盖是有意义的构造函数。但是对于某些其他类型,尤其是可变类型,它可能导致混乱。
最好的测试方法是问问自己(或类似情况)是否会使您的用户感到困惑:
tuple(…)
>>> f1 = Foo(x)
>>> f2 = Foo(x)
>>> f1.spam = 1
>>> f2.spam = 2
>>> f1.spam
2
是不可变的),请覆盖Foo
。__new__
是具有实际Foo
的某个对象的代理,并且同一对象的两个代理最好看到相同的{{1 }}),可能会覆盖spam
。spam
。例如,使用类方法:
__new__
...如果__new__
证明是真实的,则不太可能令人惊讶。
1。即使您将>>> f1 = Foo.from_x(x)
>>> f2 = Foo.from_x(x)
定义为实例方法,并且其主体看起来像是一个类方法,它实际上是一个静态方法,该方法会传递您要构造的类(将是f1 is f2
或__new__
的子类作为普通的第一个参数,并在其后传递构造函数参数(和关键字参数)。
答案 1 :(得分:0)
感谢所有提供帮助的人!为了理解如何重构已经编写的,但是存在可伸缩性问题的现有程序,已经提出了这个答案。以下是完整的工作示例。它显示的是:
在传入类型既是用户定义的又是内置的的情况下,能够测试传入类型并避免在构造函数时不必要的对象重复的功能。通过重新定义的运算符或方法即时构建的能力。这些功能对于编写可扩展的可支持API代码是必需的。 YMMV。
Foo.py
import sys
import math
class Foo():
# class level property
num = int(0)
#
# Python Instantiation Customs:
#
# Processing polymorphic input new() MUST return something or
# an object, but init() MAYNOT return anything. During runtime
# __new__ is running at the class level, while __init__ is
# running at the instance level.
#
def __new__(cls,*arg):
print ("arg type: ", type(arg[0]).__name__)
# since we are functioning at the class level, type()
# is reaching down into a non-public namespace,
# called "type" which is presumably something that
# all objects are ultimately derived from.
# functionally this is the same as isinstance()
if (type(arg[0]).__name__) == "Foo":
fooid = id(arg[0])
print ("\tinput was a Foo: ", fooid)
return arg[0] # objects of same type intercede
# at the class level here, we are calling into super() for
# the constructor. This is presumably derived from the type()
# namespace, which when handed a classname, makes one of
# whatever it was asked for, rather than one of itself.
elif (type(arg[0]).__name__) == "int":
self = super().__new__(cls)
self.inum = int(arg[0]) # integers store
fooid = id(self)
print ("\tinput was an int: ", fooid)
return (self)
elif (type(arg[0]).__name__) == "str":
self = super().__new__(cls)
self.inum = int(arg[0]) # strings become integers
fooid = id(self)
print ("\tinput was a str: ", fooid)
return (self)
# def __init__(self,*arg):
# pass
#
# because if I can do collision avoidance, I can instantiate
# inside overloaded operators:
#
def __add__(self,*arg):
argtype = type(arg[0]).__name__
print ("add overload in class:", self.__class__)
if argtype == "Foo" or argtype == "str" or argtype == "int":
print ("\tfrom a supported type")
# early exit for zero
if not arg[0]:
return self
# localized = Foo.Foo(arg[0])
# FAILS: AttributeError: type object 'Foo' has no attribute 'Foo'
# You can't call a constructor the same way from inside and outside
localized = Foo(arg[0])
print ("\tself class: ", self.__class__)
print ("\tself number: ", self.inum)
print ()
print ("\tlocalized class: ", localized.__class__)
print ("\tlocalized number: ", localized.inum)
print ()
answer = (self.inum + localized.inum)
answer = Foo(answer)
print ("\tanswer class:", answer.__class__)
print ("\tanswer sum result:", answer.inum)
return answer
assert(0), "Foo: cannot add an unsupported type"
def __str__(self): # return a stringified int or empty string
# Allow the class to stringify as if it were an int.
if self.inum >= 0:
return str(self.inum)
testfoo.py
#! /usr/bin/python
import sys
import Foo
# A python class is not transparent like in perl, it is an object
# with unconditional inheritance forced on all instances that share
# the same name.
classhandle = Foo.Foo
# The distinction between the special class object, and instance
# objects is implicitly defined by whether there is a passed value at
# constructor time. The following therefore does not work.
# classhandle = Foo.Foo()
# but we can still write and print from the class, and see it propagate,
# without having any "object" memory allocated.
print ("\nclasshandle: ", classhandle)
print ("classhandle classname: ", classhandle.__name__) # print the classname
print ("class level num: ", classhandle.num) # print the default num
classhandle.classstring = "fdsa" # define an involuntary value for all instances
print ("\n")
# so now we can create some instances with passed properties.
instance1 = Foo.Foo(int(123)) #
print ("\ninstance1: ", instance1)
print ("involuntary property derived from special class memory space: ", instance1.classstring)
print ("instance property from int: ", instance1.inum)
print ("\n")
instance2 = Foo.Foo(str("456"))
print ("\ninstance2: ", instance2)
print ("instance2 property from int: ", instance2.inum)
#
# instance3 stands for (shall we assume) some math that happened a
# thousand lines ago in a class far far away. We REALLY don't
# want to go chasing around to figure out what type it could possibly
# be, because it could be polymorphic itself. Providing a black box so
# that you don't have to do that, is after all, the whole point OOP.
#
print ("\npretend instance3 is unknowningly already a Foo\n")
instance3 = Foo.Foo(str("789"))
## So our class should be able to handle str,int,Foo types at constructor time.
print ("\ninstance4 should be a handle to the same memory location as instance3\n")
instance4 = Foo.Foo(instance3) # SHOULD return instance3 on type collision
print ("instance4: ", instance4)
# because if it does, we should be able to hand all kinds of garbage to
# overloaded operators, and they should remain type safe.
# since we are now different instances these are now different:
print ("\nADDING:_____________________\n", instance2.inum, " ", instance4.inum)
instance5 = instance4 + int(549) # instance5 should be a Foo object.
print ("\n\tAdd instance4, 549, instance5: ", instance4, " ", int(549), " ", instance5, "\n")
instance6 = instance2 + instance4 # also should be a Foo object
print ("\n\tAdd instance2, instance4, instance6: ", instance2, " ", instance4, " ", instance6, "\n")
print ("stringified instance6: ", str(instance6))