使用Sympy物理学模块,此过程可以按预期工作:
from sympy import *
from sympy.physics.vector import ReferenceFrame, CoordinateSym, divergence
R = ReferenceFrame('R')
field = R[0]*R[1]*R[2]*(R.x+R.y+R.z)
div = divergence(vect=field, frame=R)
div_func = lambdify([R[0], R[1], R[2]], div, modules='numpy')
print('Function evaluated at a point = {}'.format(div_func(1,2,8)))
但是,如果我改用CoordSys3D
进行lambdify的过程尚不清楚:
from sympy.vector import CoordSys3D, divergence, curl
A = CoordSys3D('A')
field = A.x*A.y*A.z*(A.i + A.j + A.k)
div = divergence(field)
# How do I lambdify / evaluate this?
# This fails:
# File "<lambdifygenerated-5>", line 1
# def _lambdifygenerated(A.x, A.y, A.z):
# SyntaxError: invalid syntax
# div_func = lambdify([A.x, A.y, A.z], div, modules='numpy')
# This fails:
# "name 'x' is not defined"
# div_func = lambdify([x, y, z], div, modules='numpy')
print('Function evaluated at a point = {}'.format(div_func(1,2,8)))
一些观察结果:
R[0]
是sympy.physics.vector.frame.CoordinateSym
A.x
是sympy.vector.scalar.BaseScalar
CoordSys3D
似乎是我想要的格式,特别是因为对球坐标系的支持非常简单。
例如:
A = CoordSys3D('A', transformation='spherical') # transformation requires Sympy 1.2
vec_field = a*A.r**2*A.i + c*cos(A.theta)/A.r*A.j + b * A.k
div = divergence(vec_field)
答案 0 :(得分:3)
看起来lambdify
不能正确解释A.x
,而应该生成符号,因此您必须用符号替换它。
vars = symbols('A.x A.y A.z')
div_func = lambdify(vars, div.subs(dict(zip([A.x, A.y, A.z], vars))), modules='numpy')
print(div_func(1, 2, 8)) # 26
什么叫符号vars
并不重要,我将它们命名为“ A.x”,以确保一致性。它们也可能像vars = symbols('v0:3')
。