我正在尝试使用scipy包构建有界的Voronoi图,并且在每次迭代中,我计算Voronoi单元的质心,并向质心移动一些增量,然后通过更新生成器点来重新计算Voronoi图。当我尝试绘制更新的点时,出现一个奇怪的错误,因为我绘制的点不在预期的位置。 这是代码
import matplotlib.pyplot as pl
import numpy as np
import scipy as sp
import scipy.spatial
import sys
np.random.seed(1)
eps = sys.float_info.epsilon
n_robots = 10
robots = np.random.rand(n_robots, 2)
#print(robots)
bounding_box = np.array([0., 1., 0., 1.])
def in_box(robots, bounding_box):
return np.logical_and(np.logical_and(bounding_box[0] <= robots[:, 0],
robots[:, 0] <= bounding_box[1]),
np.logical_and(bounding_box[2] <= robots[:, 1],
robots[:, 1] <= bounding_box[3]))
def voronoi(robots, bounding_box):
i = in_box(robots, bounding_box)
points_center = robots[i, :]
points_left = np.copy(points_center)
points_left[:, 0] = bounding_box[0] - (points_left[:, 0] - bounding_box[0])
points_right = np.copy(points_center)
points_right[:, 0] = bounding_box[1] + (bounding_box[1] - points_right[:, 0])
points_down = np.copy(points_center)
points_down[:, 1] = bounding_box[2] - (points_down[:, 1] - bounding_box[2])
points_up = np.copy(points_center)
points_up[:, 1] = bounding_box[3] + (bounding_box[3] - points_up[:, 1])
points = np.append(points_center,
np.append(np.append(points_left,
points_right,
axis=0),
np.append(points_down,
points_up,
axis=0),
axis=0),
axis=0)
# Compute Voronoi
vor = sp.spatial.Voronoi(points)
# Filter regions
regions = []
ind = np.arange(points.shape[0])
ind = np.expand_dims(ind,axis= 1)
for region in vor.regions:
flag = True
for index in region:
if index == -1:
flag = False
break
else:
x = vor.vertices[index, 0]
y = vor.vertices[index, 1]
if not(bounding_box[0] - eps <= x and x <= bounding_box[1] + eps and
bounding_box[2] - eps <= y and y <= bounding_box[3] + eps):
flag = False
break
if region != [] and flag:
regions.append(region)
vor.filtered_points = points_center
vor.filtered_regions = regions
return vor
def centroid_region(vertices):
A = 0
C_x = 0
C_y = 0
for i in range(0, len(vertices) - 1):
s = (vertices[i, 0] * vertices[i + 1, 1] - vertices[i + 1, 0] * vertices[i, 1])
A = A + s
C_x = C_x + (vertices[i, 0] + vertices[i + 1, 0]) * s
C_y = C_y + (vertices[i, 1] + vertices[i + 1, 1]) * s
A = 0.5 * A
C_x = (1.0 / (6.0 * A)) * C_x
C_y = (1.0 / (6.0 * A)) * C_y
return np.array([[C_x, C_y]])
def plot(r,index):
vor = voronoi(r, bounding_box)
fig = pl.figure()
ax = fig.gca()
# Plot initial points
ax.plot(vor.filtered_points[:, 0], vor.filtered_points[:, 1], 'b.')
print("initial",vor.filtered_points)
# Plot ridges points
for region in vor.filtered_regions:
vertices = vor.vertices[region, :]
ax.plot(vertices[:, 0], vertices[:, 1], 'go')
# Plot ridges
for region in vor.filtered_regions:
vertices = vor.vertices[region + [region[0]], :]
ax.plot(vertices[:, 0], vertices[:, 1], 'k-')
# Compute and plot centroids
centroids = []
for region in vor.filtered_regions:
vertices = vor.vertices[region + [region[0]], :]
centroid = centroid_region(vertices)
centroids.append(list(centroid[0, :]))
ax.plot(centroid[:, 0], centroid[:, 1], 'r.')
centroids = np.asarray(centroids)
rob = np.copy(vor.filtered_points)
# the below code is for the plotting purpose the update happens in the update function
interim_x = np.asarray(centroids[:,0] - rob[:,0])
interim_y = np.asarray(centroids[:,1] - rob[:,1])
magn = [np.linalg.norm(centroids[i,:] - rob[i,:]) for i in range(rob.shape[0])]
x = np.copy(interim_x)
x = np.asarray([interim_x[i]/magn[i] for i in range(interim_x.shape[0])])
y = np.copy(interim_y)
y = np.asarray([interim_y[i]/magn[i] for i in range(interim_y.shape[0])])
nor = np.copy(rob)
for i in range(x.shape[0]):
nor[i,0] = x[i]
nor[i,1] = y[i]
temp = np.copy(rob)
temp[:,0] = [rob[i,0] + 0.5*interim_x[i] for i in range(rob.shape[0])]
temp[:,1] = [rob[i,1] + 0.5*interim_y[i] for i in range(rob.shape[0])]
ax.plot(temp[:,0] ,temp[:,1], 'y.' )
ax.set_xlim([-0.1, 1.1])
ax.set_ylim([-0.1, 1.1])
pl.savefig("voronoi" + str(index) + ".png")
return centroids
def update(rob,centroids):
interim_x = np.asarray(centroids[:,0] - rob[:,0])
interim_y = np.asarray(centroids[:,1] - rob[:,1])
magn = [np.linalg.norm(centroids[i,:] - rob[i,:]) for i in range(rob.shape[0])]
x = np.copy(interim_x)
x = np.asarray([interim_x[i]/magn[i] for i in range(interim_x.shape[0])])
y = np.copy(interim_y)
y = np.asarray([interim_y[i]/magn[i] for i in range(interim_y.shape[0])])
nor = [np.linalg.norm([x[i],y[i]]) for i in range(x.shape[0])]
temp = np.copy(rob)
temp[:,0] = [rob[i,0] + 0.5*interim_x[i] for i in range(rob.shape[0])]
temp[:,1] = [rob[i,1] + 0.5*interim_y[i] for i in range(rob.shape[0])]
return np.asarray(temp)
if __name__ == '__main__':
for i in range(1):
centroids = plot(robots,i)
robots = update(robots,centroids)
这也是代码作用的图像。蓝色点是生成器点,红色是质心,黄色是蓝色和红色点之间的中间点。但是您可以看到,黄色的点不在蓝色和红色的点之间。
答案 0 :(得分:1)
问题在于,您的points
在细分时会被填充到Voronoi
时膨胀,而当您稍后将它们过滤掉时,这些点的顺序是错误的。因此,当您在vor.filtered_points = points_center
中设置voronoi()
时,与区域顺序相比,这些点将被随机排列。因此,当您正确计算中点时,您使用的是错误的点对。
我在此处用绿色圈出了两个正确的配对,在红色中圈出了一个不正确的配对: 从红色圆圈可以看到,边缘单元格的基点与相邻单元格的质心配对。
解决方案很简单:在过滤区域并找到要保留的区域时,需要收集落入相应区域内的点。您可以通过将vor.points
与vor.point_region
匹配并找到相应的区域来实现,您需要enumerate
regions
:
# Compute Voronoi
vor = sp.spatial.Voronoi(points)
# Filter regions and select corresponding points
regions = []
points_to_filter = [] # we'll need to gather points too
ind = np.arange(points.shape[0])
ind = np.expand_dims(ind,axis= 1)
for i,region in enumerate(vor.regions): # enumerate the regions
if not region: # nicer to skip the empty region altogether
continue
flag = True
for index in region:
if index == -1:
flag = False
break
else:
x = vor.vertices[index, 0]
y = vor.vertices[index, 1]
if not(bounding_box[0] - eps <= x and x <= bounding_box[1] + eps and
bounding_box[2] - eps <= y and y <= bounding_box[3] + eps):
flag = False
break
if flag:
regions.append(region)
# find the point which lies inside
points_to_filter.append(vor.points[vor.point_region == i][0,:])
vor.filtered_points = np.array(points_to_filter)
vor.filtered_regions = regions
通过这些修改,平均效果很好: