我有一个合成图像。我想对它的局部结构张量(LST)进行特征值分解,以用于某些边缘检测。我使用LST的特征值l1
,l2
和特征向量e1
,e2
为图像的每个像素生成自适应椭圆。不幸的是,我的图的同质区域的特征值l1
,l2
不相等,因此椭圆的半轴长度也不相等:
我不知道我的代码有什么问题:
function [H,e1,e2,l1,l2] = LST_eig(I,sigma1,rw)
% LST_eig - compute the structure tensor and its eigen
% value decomposition
%
% H = LST_eig(I,sigma1,rw);
%
% sigma1 is pre smoothing width (in pixels).
% rw is filter bandwidth radius for tensor smoothing (in pixels).
%
n = size(I,1);
m = size(I,2);
if nargin<2
sigma1 = 0.5;
end
if nargin<3
rw = 0.001;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% pre smoothing
J = imgaussfilt(I,sigma1);
% compute gradient using Sobel operator
Sch = [-3 0 3;-10 0 10;-3 0 3];
%h = fspecial('sobel');
gx = imfilter(J,Sch,'replicate');
gy = imfilter(J,Sch','replicate');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute tensors
gx2 = gx.^2;
gy2 = gy.^2;
gxy = gx.*gy;
% smooth
gx2_sm = imgaussfilt(gx2,rw); %rw/sqrt(2*log(2))
gy2_sm = imgaussfilt(gy2,rw);
gxy_sm = imgaussfilt(gxy,rw);
H = zeros(n,m,2,2);
H(:,:,1,1) = gx2_sm;
H(:,:,2,2) = gy2_sm;
H(:,:,1,2) = gxy_sm;
H(:,:,2,1) = gxy_sm;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% eigen decomposition
l1 = zeros(n,m);
l2 = zeros(n,m);
e1 = zeros(n,m,2);
e2 = zeros(n,m,2);
for i = 1:n
for j = 1:m
Hmat = zeros(2);
Hmat(:,:) = H(i,j,:,:);
[V,D] = eigs(Hmat);
D = abs(D);
l1(i,j) = D(1,1); % eigen values
l2(i,j) = D(2,2);
e1(i,j,:) = V(:,1); % eigen vectors
e2(i,j,:) = V(:,2);
end
end
感谢您的帮助。
这是我的椭圆绘图代码:
% determining ellipse parameteres from eigen value decomposition of LST
M = input('Enter the maximum allowed semi-major axes length: ');
I = input('Enter the input data: ');
row = size(I,1);
col = size(I,2);
a = zeros(row,col);
b = zeros(row,col);
cos_phi = zeros(row,col);
sin_phi = zeros(row,col);
for m = 1:row
for n = 1:col
a(m,n) = (l2(m,n)+eps)/(l1(m,n)+l2(m,n)+2*eps)*M;
b(m,n) = (l1(m,n)+eps)/(l1(m,n)+l2(m,n)+2*eps)*M;
cos_phi1 = e1(m,n,1);
sin_phi1 = e1(m,n,2);
len = hypot(cos_phi1,sin_phi1);
cos_phi(m,n) = cos_phi1/len;
sin_phi(m,n) = sin_phi1/len;
end
end
%% plot elliptic structuring elements using parametric equation and superimpose on the image
figure; imagesc(I); colorbar; hold on
t = linspace(0,2*pi,50);
for i = 10:10:row-10
for j = 10:10:col-10
x0 = j;
y0 = i;
x = a(i,j)/2*cos(t)*cos_phi(i,j)-b(i,j)/2*sin(t)*sin_phi(i,j)+x0;
y = a(i,j)/2*cos(t)*sin_phi(i,j)+b(i,j)/2*sin(t)*cos_phi(i,j)+y0;
plot(x,y,'r','linewidth',1);
hold on
end
end
这是axis equal
的新情节:
答案 0 :(得分:0)
我创建了一个类似于您的测试图像(可能不太复杂),如下所示:
pos = yy([400,500]) + 100 * sin(xx(400)/400*2*pi);
img = gaussianlineclip(pos+50,7) + gaussianlineclip(pos-50,7);
I = double(stretch(img));
(这需要DIPimage才能运行)
然后在其上运行LST_eig
(sigma1=1
和rw=3
)和您的代码以绘制椭圆(除了添加axis equal
之外,其他都没有,)结果:
我怀疑图像的某些蓝色区域有些不均匀,从而导致出现很小的渐变。使用椭圆时定义椭圆的问题是,对于足够定向的图案,即使看不到该图案,您也会得到一条直线。您可以通过如下定义椭圆轴长度来解决此问题:
a = repmat(M,size(l2)); % longest axis is always the same
b = M ./ (l2+1); % shortest axis is shorter the more important the largest eigenvalue is
最小特征值l1
在具有强梯度但没有明确方向的区域中较高。上面没有考虑到这一点。一种选择是使a
既取决于能量又取决于各向异性,而b
仅取决于能量:
T = 1000; % some threshold
r = M ./ max(l1+l2-T,1); % circle radius, smaller for higher energy
d = (l2-l1) ./ (l1+l2+eps); % anisotropy measure in range [0,1]
a = M*d + r.*(1-d); % use `M` length for high anisotropy, use `r` length for high isotropy (circle)
b = r; % use `r` width always
这样,如果存在强梯度但没有明确的方向,则整个椭圆会收缩,而当仅存在弱梯度或没有梯度时,椭圆会保持较大且呈圆形。阈值T
取决于图像强度,请根据需要进行调整。
您可能还应该考虑采用特征值的平方根,因为它们对应于方差。
一些建议:
你可以写
a = (l2+eps)./(l1+l2+2*eps) * M;
b = (l1+eps)./(l1+l2+2*eps) * M;
cos_phi = e1(:,:,1);
sin_phi = e1(:,:,2);
无循环。请注意,e1
已通过定义进行了规范化,因此无需再次对其进行规范化。
使用Gaussian gradients代替高斯平滑,然后再使用Sobel或Schaar滤波器。有关MATLAB实现的一些详细信息,请参见here。
在需要所有特征值时,请使用eig
,而不要使用eigs
。尤其对于这么小的矩阵,使用eigs
没有优势。 eig
似乎产生了更一致的结果。不需要取特征值(D = abs(D)
)的绝对值,因为根据定义它们是非负的。
您的默认值rw = 0.001
太小,该大小的sigma对图像没有影响。平滑的目的是平均局部邻域中的梯度。我使用rw=3
效果很好。
使用DIPimage。有一个structuretensor
函数,高斯梯度和更多有用的东西。 The 3.0 version (still in development)是主要的重写,在处理矢量和矩阵值的图像时有显着改进。我可以将您所有的LST_eig
编写如下:
I = dip_image(I);
g = gradient(I, sigma1);
H = gaussf(g*g.', rw);
[e,l] = eig(H);
% Equivalences with your outputs:
l1 = l{2};
l2 = l{1};
e1 = e{2,:};
e2 = e{1,:};