求解非线性方程组

时间:2018-07-05 12:39:27

标签: r system nonlinear-functions

我正在尝试解决以下四个方程式的系统。我尝试使用“ rootSolve”包,但似乎无法以这种方式找到解决方案。

我正在使用的代码如下:

model <- function(x) {
F1 <- sqrt(x[1]^2 + x[3]^2) -1
F2 <- sqrt(x[2]^2 + x[4]^2) -1
F3 <- x[1]*x[2] + x[3]*x[4]
F4 <- -0.58*x[2] - 0.19*x[3]
c(F1 = F1, F2 = F2, F3 = F3, F4 = F4)
}
(ss <- multiroot(f = model, start = c(0,0,0,0)))

但这给了我以下错误:

Warning messages:
1: In stode(y, times, func, parms = parms, ...) :
error during factorisation of matrix (dgefa);         singular matrix
2: In stode(y, times, func, parms = parms, ...) : steady-state not reached

我已经更改了起始值,如另一个类似的答案所建议,对于某些我可以找到解决方案。 但是,根据我使用的来源,该系统应具有唯一标识的解决方案。 关于如何解决此系统的任何想法?

谢谢!

2 个答案:

答案 0 :(得分:1)

您的方程组有多种解决方案。 我使用其他软件包来解决您的系统:nleqslv如下:

library(nleqslv)

model <- function(x) {
   F1 <- sqrt(x[1]^2 + x[3]^2) - 1
   F2 <- sqrt(x[2]^2 + x[4]^2) - 1
   F3 <- x[1]*x[2] + x[3]*x[4]
   F4 <- -0.58*x[2] - 0.19*x[3]
   c(F1 = F1, F2 = F2, F3 = F3, F4 = F4)
}

#find solution
xstart  <-  c(1.5, 0, 0.5, 0)
nleqslv(xstart,model)

这与Prem的答案相同。

您的系统有多种解决方案。 包nleqslv提供了在给定不同起始值矩阵的情况下搜索解的功能。你可以用这个

set.seed(13)
xstart <- matrix(runif(400,0,2),ncol=4)
searchZeros(xstart,model)

(注意:不同的种子可能找不到所有四种解决方案)

您将看到有四种不同的解决方案:

$x
     [,1]          [,2]          [,3] [,4]
[1,]   -1 -1.869055e-10  5.705536e-10   -1
[2,]   -1  4.992198e-13 -1.523934e-12    1
[3,]    1 -1.691309e-10  5.162942e-10   -1
[4,]    1  1.791944e-09 -5.470144e-09    1
.......

这显然表明确切的解决方案如以下矩阵所示

xsol <- matrix(c(1,0,0,1,
                 1,0,0,-1,
                -1,0,0,1,
                -1,0,0,-1),byrow=TRUE,ncol=4)

然后做

model(xsol[1,])
model(xsol[2,])
model(xsol[3,])
model(xsol[4,])

确认! 我没有尝试解析地找到这些解决方案,但是您可以看到,如果x[2]x[3]为零,那么F3F4为零。然后可以立即找到x[1]x[4]的解决方案。

答案 1 :(得分:0)

以上警告指出,使用您提供给multiroot的起始值无法找到最佳解决方案。

让我们尝试一下-

library(rootSolve)

model <- function(x) {
  F1 <- sqrt(x[1]^2 + x[3]^2) - 1
  F2 <- sqrt(x[2]^2 + x[4]^2) - 1
  F3 <- x[1]*x[2] + x[3]*x[4]
  F4 <- -0.58*x[2] - 0.19*x[3]
  c(F1 = F1, F2 = F2, F3 = F3, F4 = F4)
  }

#solution
(ss <- multiroot(f = model, start = c(1.5, 0, 0.5, 0)))

它给出了

> ss
$root
[1]  1.000000e+00  4.752703e-12 -1.450825e-11  1.000000e+00

$f.root
           F1            F2            F3            F4 
 3.404610e-12  3.494982e-13 -9.755549e-12  1.929753e-20 

$iter
[1] 7

$estim.precis
[1] 3.377414e-12

经过多次试用,我发现每次更改它的起始值时,我每次都会得到几乎相同的结果(即1, 0, 0, 1)。