我在R方面没有太多经验,但是我正在尝试基于fPortfolio软件包使用R进行约束组合优化。使用功能PortfolioFrontier会收到错误消息:
Error in `colnames<-`(`*tmp*`, value = names(getMu(Data))) :
attempt to set 'colnames' on an object with less than two dimensions
我的代码:
#specs
spec <- portfolioSpec()
setNFrontierPoints(spec)<-200
setRiskFreeRate(spec)<-0.001366179
constraints<-c("Long only", "maxW[1]=.05","maxW[2]=.25")
setTargetReturn(Spec) = mean(colMeans(as.timeSeries(portfolioXTS)))
#analysis
portfolioConstraints(as.timeSeries(portfolioXTS), spec, constraints)
portfolioData(as.timeSeries(portfolioXTS), spec = portfolioSpec())
efficientPortfolio(as.timeSeries(portfolioXTS), spec, constraints)
frontier <- portfolioFrontier(as.timeSeries(portfolioXTS),spec,
constraints,include.mvl = TRUE, title="Traditional Asset Mix")
tangencyPortfolio(as.timeSeries(portfolioXTS), spec, constraints)
minvariancePortfolio(as.timeSeries(portfolioXTS), spec, constraints)
print(frontier)
我在论坛上发现有人遇到类似问题,但没有解决方案。我知道行数必须大于列数,但是可以满足此要求。
感谢您的帮助!
数据样本:
dput
> dput(head(portfolioXTS))
structure(c(0.00156666666666667, 0.00158333333333333, 0.00169166666666667,
0.0016, 0.00158025, 0.00155, 0.00673371680501522, 0.00900662025078258,
-0.0240575754236355, 0.0248764429466077, 0.00560202723890391,
0.0141166753754614, -0.0301780036878394, -0.00848891285361475,
0.0444382350834758, -0.0335723121416733, 0.00238564176285805,
-0.0603502320765891, 0.032911309501205, 0.0157910651749094, 0.0593749401684385,
0.0061188298291901, -0.0166768949719553, -0.0753692400590273), .indexTZ = "UTC", .indexCLASS = "Date", tclass = "Date", tzone = c(TZ = "UTC"), class = c("xts",
"zoo"), index = structure(c(1009843200, 1012521600, 1014940800,
1017532800, 1020124800, 1022803200), tzone = "UTC", tclass = "Date"), .Dim = c(6L,
4L), .Dimnames = list(NULL, c("Cash", "Bonds", "Equities_dev",
"Equities_em")))
答案 0 :(得分:0)
这个选项怎么样?
# Economist at Large
# Modern Portfolio Theory
# Use solve.QP to solve for efficient frontier
# Last Edited 5/3/13
# This file uses the solve.QP function in the quadprog package to solve for the
# efficient frontier.
# Since the efficient frontier is a parabolic function, we can find the solution
# that minimizes portfolio variance and then vary the risk premium to find
# points along the efficient frontier. Then simply find the portfolio with the
# largest Sharpe ratio (expected return / sd) to identify the most
# efficient portfolio
library(stockPortfolio) # Base package for retrieving returns
library(ggplot2) # Used to graph efficient frontier
## Warning: package 'ggplot2' was built under R version 3.3.3
library(reshape2) # Used to melt the data
## Warning: package 'reshape2' was built under R version 3.3.3
library(quadprog) #Needed for solve.QP
# Create the portfolio using ETFs, incl. hypothetical non-efficient allocation
stocks <- c(
"VTSMX" = .0,
"SPY" = .20,
"EFA" = .10,
"IWM" = .10,
"VWO" = .30,
"LQD" = .20,
"HYG" = .10)
# Retrieve returns, from earliest start date possible (where all stocks have
# data) through most recent date
returns <- getReturns(names(stocks[-1]), freq="week") #Currently, drop index
#### Efficient Frontier function ####
eff.frontier <- function (returns, short="no", max.allocation=NULL,
risk.premium.up=.5, risk.increment=.005){
# return argument should be a m x n matrix with one column per security
# short argument is whether short-selling is allowed; default is no (short
# selling prohibited)max.allocation is the maximum % allowed for any one
# security (reduces concentration) risk.premium.up is the upper limit of the
# risk premium modeled (see for loop below) and risk.increment is the
# increment (by) value used in the for loop
covariance <- cov(returns)
print(covariance)
n <- ncol(covariance)
# Create initial Amat and bvec assuming only equality constraint
# (short-selling is allowed, no allocation constraints)
Amat <- matrix (1, nrow=n)
bvec <- 1
meq <- 1
# Then modify the Amat and bvec if short-selling is prohibited
if(short=="no"){
Amat <- cbind(1, diag(n))
bvec <- c(bvec, rep(0, n))
}
# And modify Amat and bvec if a max allocation (concentration) is specified
if(!is.null(max.allocation)){
if(max.allocation > 1 | max.allocation <0){
stop("max.allocation must be greater than 0 and less than 1")
}
if(max.allocation * n < 1){
stop("Need to set max.allocation higher; not enough assets to add to 1")
}
Amat <- cbind(Amat, -diag(n))
bvec <- c(bvec, rep(-max.allocation, n))
}
# Calculate the number of loops
loops <- risk.premium.up / risk.increment + 1
loop <- 1
# Initialize a matrix to contain allocation and statistics
# This is not necessary, but speeds up processing and uses less memory
eff <- matrix(nrow=loops, ncol=n+3)
# Now I need to give the matrix column names
colnames(eff) <- c(colnames(returns), "Std.Dev", "Exp.Return", "sharpe")
# Loop through the quadratic program solver
for (i in seq(from=0, to=risk.premium.up, by=risk.increment)){
dvec <- colMeans(returns) * i # This moves the solution along the EF
sol <- solve.QP(covariance, dvec=dvec, Amat=Amat, bvec=bvec, meq=meq)
eff[loop,"Std.Dev"] <- sqrt(sum(sol$solution*colSums((covariance*sol$solution))))
eff[loop,"Exp.Return"] <- as.numeric(sol$solution %*% colMeans(returns))
eff[loop,"sharpe"] <- eff[loop,"Exp.Return"] / eff[loop,"Std.Dev"]
eff[loop,1:n] <- sol$solution
loop <- loop+1
}
return(as.data.frame(eff))
}
# Run the eff.frontier function based on no short and 50% alloc. restrictions
eff <- eff.frontier(returns=returns$R, short="no", max.allocation=.50,
risk.premium.up=1, risk.increment=.001)
## SPY EFA IWM VWO LQD
## SPY 6.810936e-04 6.986904e-04 7.919993e-04 7.889955e-04 2.855759e-05
## EFA 6.986904e-04 8.825046e-04 8.166626e-04 9.612606e-04 4.221047e-05
## IWM 7.919993e-04 8.166626e-04 1.083438e-03 9.426306e-04 1.195884e-05
## VWO 7.889955e-04 9.612606e-04 9.426306e-04 1.339355e-03 3.826838e-05
## LQD 2.855759e-05 4.221047e-05 1.195884e-05 3.826838e-05 1.085459e-04
## HYG 3.224162e-04 3.515984e-04 3.832917e-04 3.891801e-04 8.093112e-05
## HYG
## SPY 3.224162e-04
## EFA 3.515984e-04
## IWM 3.832917e-04
## VWO 3.891801e-04
## LQD 8.093112e-05
## HYG 2.975042e-04
# Find the optimal portfolio
eff.optimal.point <- eff[eff$sharpe==max(eff$sharpe),]
# graph efficient frontier
# Start with color scheme
ealred <- "#7D110C"
ealtan <- "#CDC4B6"
eallighttan <- "#F7F6F0"
ealdark <- "#423C30"
ggplot(eff, aes(x=Std.Dev, y=Exp.Return)) + geom_point(alpha=.1, color=ealdark) +
geom_point(data=eff.optimal.point, aes(x=Std.Dev, y=Exp.Return, label=sharpe),
color=ealred, size=5) +
annotate(geom="text", x=eff.optimal.point$Std.Dev,
y=eff.optimal.point$Exp.Return,
label=paste("Risk: ",
round(eff.optimal.point$Std.Dev*100, digits=3),"%\nReturn: ",
round(eff.optimal.point$Exp.Return*100, digits=4),"%\nSharpe: ",
round(eff.optimal.point$sharpe*100, digits=2), "%", sep=""),
hjust=0, vjust=1.2) +
ggtitle("Efficient Frontier and Optimal Portfolio") +
labs(x="Risk (standard deviation of portfolio)", y="Return") +
theme(panel.background=element_rect(fill=eallighttan),
text=element_text(color=ealdark),
plot.title=element_text(size=24, color=ealred))