我在访问树状图(CAH)的节点时遇到了一些困难,我设法获得了这些节点的坐标,但是在知道这些点是矢量而不是更多矩阵的情况下,我无法找到如何在这些点上应用随机森林算法
from scipy.cluster.hierarchy import dendrogram, linkage
Z = linkage(centroids, 'average')
plt.figure(figsize=(25, 10))
plt.title('Hierarchical Clustering Dendrogram')
plt.xlabel('sample index')
plt.ylabel('distance')
dendrogram(
Z,
leaf_rotation=90., # rotates the x axis labels
leaf_font_size=8., # font size for the x axis labels
)
plt.show()
def fancy_dendrogram(*args, **kwargs):
max_d = kwargs.pop('max_d', None)
if max_d and 'color_threshold' not in kwargs:
kwargs['color_threshold'] = max_d
annotate_above = kwargs.pop('annotate_above', 0)
ddata = dendrogram(*args, **kwargs)
if not kwargs.get('no_plot', False):
plt.title('Hierarchical Clustering Dendrogram (truncated)')
plt.xlabel('sample index or (cluster size)')
plt.ylabel('distance')
for i, d, c in zip(ddata['icoord'], ddata['dcoord'], ddata['color_list']):
x = 0.5 * sum(i[1:3])
y = d[1]
if y > annotate_above:
#print("%.3g" % y)
#print("%.3g" % x)
plt.plot(x, y, 'o', c=c)
plt.annotate("%.3g" % y, (x, y), xytext=(0, -5),
textcoords='offset points',
va='top', ha='center')
if max_d:
plt.axhline(y=max_d, c='k')
return ddata
fancy_dendrogram(
Z,
#truncate_mode='lastp',
leaf_rotation=90.,
leaf_font_size=8.,
#show_contracted=True,
annotate_above=0.1, # useful in small plots so annotations don't overlap
)
# Get current size
fig_size = plt.rcParams["figure.figsize"]
# Prints: [8.0, 6.0]
print "Current size:", fig_size
# Set figure width to 12 and height to 9
fig_size[0] = 20
fig_size[1] = 500
plt.rcParams["figure.figsize"] = fig_size
plt.show()