我尝试从.pb张量流模型中提取权重并将其存储在文本文件中。文本文件本身的大小比模型大。为什么会这样? 预先感谢
提取权重的代码:
import tensorflow as tf
from tensorflow.python.platform import gfile
from tensorflow.python.framework import tensor_util
import operator
from functools import reduce
import matplotlib.pyplot as plt
import zlib
import pickle
PB_PATH = 'quantized_graph_resnet.pb'
with tf.Session() as sess:
with gfile.FastGFile(PB_PATH,'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
sess.graph.as_default()
tf.import_graph_def(graph_def, name='')
graph_nodes = [n for n in graph_def.node]
wts = [n for n in graph_nodes if n.op=='Const']
def check(l):
for item in l:
if(type(item) is list):
return True
return False
weightsFreq = {}
f = open('weights.txt', 'w')
for n in wts:
print("Name of the node - %s" % n.name)
if(True):
l = (tensor_util.MakeNdarray(n.attr['value'].tensor)).tolist()
if(isinstance(l, int)):
f.write('%d' % l)
f.write(' ')
if l in weightsFreq:
weightsFreq[l]+=1
else:
weightsFreq[l]=1
continue
if(isinstance(l, float)):
continue
while(check(l)):
l = reduce(operator.concat, l)
for item in l :
f.write('%d' % item)
f.write(' ')
# print(item)
if item in weightsFreq:
weightsFreq[item]+=1
else:
weightsFreq[item]=1
# print("Value - ", tensor_util.MakeNdarray(n.attr['value'].tensor), type(tensor_util.MakeNdarray(n.attr['value'].tensor)), "\n")
答案 0 :(得分:0)
文本文件是存储大量十进制数字的一种非常低效的方式,它为每个数字的每个数字使用一个字节,而二进制文件将使用固定大小的表示形式(每个数字4个字节,并且单精度浮点数点号)。
这就是为什么文本文件比二进制文件大得多的原因。