如何在Mathematica中求解非通勤变量的矩阵方程

时间:2018-06-08 03:28:04

标签: matrix wolfram-mathematica linear-algebra

我想根据A的元素解决系统A * B = I的B元素。

A和B是正方形,A和B的元素不通勤(即A [1,1] * B [1,1] = / = B [1,1] * A [1, 1]),A和B的大小为nxn。

以下是我迄今为止所做的尝试:

In[16]:= n = 2;

In[34]:= Reduce[Flatten[Table[
   Sum[A[i, j] ** B[j, k], {j, 1, n}] == KroneckerDelta[i, k], {i, 1, 
    n}, {k, 1, n}]], {B[1, 1]}]

During evaluation of In[34]:= Reduce::nsmet: This system cannot be solved with the methods available to Reduce.

Out[34]= Reduce[{A[1, 1] ** B[1, 1] + A[1, 2] ** B[2, 1] == 1, 
  A[1, 1] ** B[1, 2] + A[1, 2] ** B[2, 2] == 0, 
  A[2, 1] ** B[1, 1] + A[2, 2] ** B[2, 1] == 0, 
  A[2, 1] ** B[1, 2] + A[2, 2] ** B[2, 2] == 1}, {B[1, 1]}]

您能告诉我如何修复此代码以使其正常工作吗?如果n = 2,则解决方案应该是这里最后2个方程中的任何一个:

http://www.math.chalmers.se/~rootzen/highdimensional/blockmatrixinverse.pdf

0 个答案:

没有答案