我正在尝试编写奇异值分解(SVD)的简单实现。我正在使用单侧Jacobi算法,因为它看起来很简单。该算法被描述为here,并且有here的简单Matlab代码(练习4)。我已经实现了相同的代码,它工作正常,我的意思是SVD(A)= U * S * V'(或任何其他使用的符号)和一些矩阵的结果与Matlab的SVD生成的相同(此函数除外不对奇异值进行排序)。但我的问题是,当矩阵A的奇异值为0时,U和V不再是酉矩阵!
有没有办法更新此算法,以便它适用于具有0奇异值的情况?如果没有,是否有另一种SVD算法易于实现? 任何帮助表示赞赏。
这是我的Matlab代码,与上面链接中的代码基本相同,只是完成并稍作修改。
function [U,S,V] = jacobi_SVD(A)
TOL=1.e-4;
n=size(A,1);
U=A';
V=eye(n);
converge=TOL+1;
while converge>TOL
converge=0;
for i=1:n-1
for j=i+1:n
% compute [alpha gamma;gamma beta]=(i,j) submatrix of U*U'
alpha=sumsqr(U(i, :));
beta=sumsqr(U(j, :));
gamma=sum(U(i, :).* U(j, :));
converge=max(converge,abs(gamma)/sqrt(alpha*beta));
% compute Jacobi rotation that diagonalizes
% [alpha gamma;gamma beta]
zeta=(beta-alpha)/(2*gamma);
t=sign(zeta)/(abs(zeta)+sqrt(1+zeta^2));
c= 1.0 / (sqrt(1 + t * t));
s= c * t;
% update columns i and j of U
t=U(i, :);
U(i, :)=c*t-s*U(j, :);
U(j, :)=s*t+c*U(j, :);
% update matrix V of right singular vectors
t=V(i, :);
V(i, :)=c*t-s*V(j, :);
V(j, :)=s*t+c*V(j, :);
end
end
end
% the singular values are the norms of the columns of U
% the left singular vectors are the normalized columns of U
for j=1:n
singvals(j)=norm(U(j, :));
U(j, :)=U(j, :)/singvals(j);
end
S=diag(singvals);
U = U';
V = V'; %return V, not V'
end
答案 0 :(得分:1)
我无法让你的代码运行,因为当你评估alpha和beta时,你有sumsq你还没有定义。我在Matlab website.上找到了一些使用QR分解(Gram-schmidt)的简单代码。
function [u,s,v] = svdsim(a,tol)
%SVDSIM simple SVD program
%
% A simple program that demonstrates how to use the
% QR decomposition to perform the SVD of a matrix.
% A may be rectangular and complex.
%
% usage: [U,S,V]= SVDSIM(A)
% or S = SVDSIM(A)
%
% with A = U*S*V' , S>=0 , U'*U = Iu , and V'*V = Iv
%
% The idea is to use the QR decomposition on A to gradually "pull" U out from
% the left and then use QR on A transposed to "pull" V out from the right.
% This process makes A lower triangular and then upper triangular alternately.
% Eventually, A becomes both upper and lower triangular at the same time,
% (i.e. Diagonal) with the singular values on the diagonal.
%
% Matlab's own SVD routine should always be the first choice to use,
% but this routine provides a simple "algorithmic alternative"
% depending on the users' needs.
%
%see also: SVD, EIG, QR, BIDIAG, HESS
%
% Paul Godfrey
% October 23, 2006
if ~exist('tol','var')
tol=eps*1024;
end
%reserve space in advance
sizea=size(a);
loopmax=100*max(sizea);
loopcount=0;
% or use Bidiag(A) to initialize U, S, and V
u=eye(sizea(1));
s=a';
v=eye(sizea(2));
Err=realmax;
while Err>tol & loopcount<loopmax ;
% log10([Err tol loopcount loopmax]); pause
[q,s]=qr(s'); u=u*q;
[q,s]=qr(s'); v=v*q;
% exit when we get "close"
e=triu(s,1);
E=norm(e(:));
F=norm(diag(s));
if F==0, F=1;end
Err=E/F;
loopcount=loopcount+1;
end
% [Err/tol loopcount/loopmax]
%fix the signs in S
ss=diag(s);
s=zeros(sizea);
for n=1:length(ss)
ssn=ss(n);
s(n,n)=abs(ssn);
if ssn<0
u(:,n)=-u(:,n);
end
end
if nargout<=1
u=diag(s);
end
return
通常,根据我的经验,你实际上并没有零。数值精度会给你留下近似的东西,例如,以下内容。如果我想创建一个5 x 5矩阵但是它是3级,我可以执行以下操作。
A = randn(5,3)*randn(5,3);
[U,S,Vt] = svdsim(A,1e-8);
S =
6.3812 0 0 0 0
0 2.0027 0 0 0
0 0 1.0240 0 0
0 0 0 0.0000 0
0 0 0 0 0.0000
现在看起来你看起来像是零。但如果你仔细观察。
format long
>> S(4,4)
ans =
3.418057860623250e-16
S(5,5)
ans =
9.725444388260210e-17
我会注意到这是机器epsilon,并且为了所有密集目的,它是0.