使用张量流 - 物体检测在VOC0712上训练的地图很低

时间:2018-06-05 06:20:15

标签: api tensorflow

我在mobilenet V2配置中使用tensorflow-object-detection默认参数来训练VOC0712数据集,测试VOC2007测试数据集,地图非常低只有65%,有什么建议可以提高地图值?

以下是同样的问题,但没有解决方案。 https://github.com/tensorflow/models/issues/1735

我想感谢您提供有关改善地图的任何培训建议。

对不起,这是我的错。这是我使用tensorflow-Object-detection的ssd_litemobilenet_v2模型在VOC0712的trainval数据集上训练的损失和地图值,然后在VOC2007的测试数据集上进行测试。

效果不如论文中那么好。有没有更好的方法来改善地图?感谢。

# SSDLite with Mobilenet v2 configuration for MSCOCO Dataset.
model {
  ssd {
    num_classes: 20
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }

    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }

    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.2
        max_scale: 0.95
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.3333
      }
    }

    image_resizer {
      fixed_shape_resizer {
        height: 300
        width: 300
      }
    }

    box_predictor {
      convolutional_box_predictor {
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.8
        kernel_size: 3
        use_depthwise: true
        box_code_size: 4
        apply_sigmoid_to_scores: false
        conv_hyperparams {
          activation: RELU_6,
          regularizer {
            l2_regularizer {
              weight: 0.00004
            }
          }

          initializer {
            truncated_normal_initializer {
              stddev: 0.03
              mean: 0.0
            }
          }

          batch_norm {
            train: true,
            scale: true,
            center: true,
            decay: 0.9997,
            epsilon: 0.001,
          }
        }
      }
    }

    feature_extractor {
      type: 'ssd_mobilenet_v2'
      min_depth: 16
      depth_multiplier: 1.0
      use_depthwise: true
      conv_hyperparams {
        activation: RELU_6,
        regularizer {
          l2_regularizer {
            weight: 0.00004
          }
        }

        initializer {
          truncated_normal_initializer {
            stddev: 0.03
            mean: 0.0
          }
        }
        batch_norm {
          train: true,
          scale: true,
          center: true,
          decay: 0.9997,
          epsilon: 0.001,
        }
      }
    }

    loss {
      classification_loss {
        weighted_sigmoid {
        }
      }
      localization_loss {
        weighted_smooth_l1 {
        }
      }

      hard_example_miner {
        num_hard_examples: 3000
        iou_threshold: 0.99
        loss_type: CLASSIFICATION
        max_negatives_per_positive: 3
        min_negatives_per_image: 3
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }

    normalize_loss_by_num_matches: true
    post_processing {
      batch_non_max_suppression {
        score_threshold: 1e-8
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
  }
}


train_config: {
  batch_size: 24
  optimizer {
    rms_prop_optimizer: {

      learning_rate: {

        exponential_decay_learning_rate {

          initial_learning_rate: 0.004
          decay_steps: 800720
          decay_factor: 0.95
        }
      }
      momentum_optimizer_value: 0.9
      decay: 0.9
      epsilon: 1.0
    }
  }

  fine_tune_checkpoint: "./object_detection/mine/ssdlite_mobilenet_v2/model.ckpt"

  fine_tune_checkpoint_type:  "detection"

  num_steps: 300000

  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
}

train_input_reader: {

  tf_record_input_reader {
    input_path: "./object_detection/mine/pascal_voc0712_trainval.record"
  }
  label_map_path: "./object_detection/mine/pascal_label_map.pbtxt"
}


eval_config: {
  num_examples: 4952
  # Note: The below line limits the evaluation process to 10 evaluations.
  # Remove the below line to evaluate indefinitely.
  max_evals: 10
}

eval_input_reader: 
{
  tf_record_input_reader 
  {
    input_path: "./object_detection/mine/pascal_voc2007_test.record"
  }
  label_map_path: "./object_detection/mine/pascal_label_map.pbtxt"
  shuffle: false
  num_readers: 1
}

[enter image description here][1]


[enter image description here][2]


  [1]: https://i.stack.imgur.com/R8u6G.png
  [2]: https://i.stack.imgur.com/AzrdU.png

0 个答案:

没有答案